Обзоры и полезная информация для радиолюбителей. Радиочастоты Кто работает на частоте 144 мгц

Луна - ближайшее к Земле небесное тело. Её радиус равен 1737 км, масса в 81,3 раза меньше массы Земли, а средняя плотность 3,35 г/куб. см, т.е. в полтора раза меньше плотности Земли. Продолжительность лунных суток составляет 29,5 земных. Среднее расстояние на трассе Земля-Луна-Земля составляет 750 тыс. км, затухание сигнала на этом пути для радиоволн метрового диапазона около 200db, т.е. сигнал ослабляется в десять, в десятой степени раз и идет туда и обратно 2,5 секунды.

Идея использовать Луну – спутник Земли в качестве пассивного ретранслятора пришла давно. Первые отражения радиоволн от поверхности Луны были получены еще в1946 году учеными Венгрии и США, работающими в этом направлении независимо друг от друга. При экспериментах использовались передатчики мощностью 200 КВт, работающие на волне около 2 метров и антенны с коэффициентом усиления 400.

Большие работы в этом направлении были проведены в 1954-57 годах в Горьковском университете. Для опытов использовались волны 10 и 3 см, коэффициент направленного действия антенн на волне 3 см достигал 120 тыс., т.е. энергия концентрировалась в угле 0,5 градуса. В результате этих опытов был измерен коэффициент отражения радиоволн от Луны, который составил примерно 0,25 - и было установлено, что отражение происходит от центральной части видимого диска Луны. Опыты радиолокации Луны дали реальную почву для осуществления идеи использования Луны в качестве пассивного ретранслятора.

Заинтересовались этой идеей и радиолюбители. И вот в июле 1960 года была проведена первая радиолюбительская связь в диапазоне 1296 Мгц между американскими клубными любительскими радиостанциями W6HB и W1BU. В 1964 году была проведена первая радиосвязь в диапазоне 144 Мгц между радиолюбителями OH1NL и W6DNG.

В Советском Союзе первая любительская радиосвязь через Луну была проведена 11 мая 1979 года операторами коллективной радиостанции UK2BAS, в диапазоне 432 Мгц. Их партнером был K2UYH. Позднее 19 января 1981 года радиолюбителем UT5DL была проведена первая радиосвязь в диапазоне 144 Мгц. Его партнером был K1WHS из штата Мэн, имеющий на то время самую большую антенну (24 стрелы по 14 элементов).

20 апреля, того же 1981 года, провел свою первую радиосвязь и автор этой статьи (ex UB5JIN). А дальше пошло – поехало: 6 декабря 1981 года, первая внутрисоюзная радиосвязь (UB5JIN и UA3TCF), 11 января 1982 года - первая радиосвязь с территории СССР на SSB – (UB5JIN и K1WHS), 15 августа 1982 года первая связь с Японией (UB5JIN и JA6DR), 10 октября с Венесуэлой (UB5JIN и YV5ZZ) и так далее…

Сегодня через Луну проводят любительские связи тысячи радиолюбителей всех континентов земного шара в диапазонах 144, 432, 1296, 5600 Мгц. Каждый из диапазонов имеет свои особенности, достоинства и недостатки.

Прием на земле сигналов, отраженных от Луны, встречает большие принципиальные трудности:

Луна движется относительно Земли с большой угловой скоростью, поэтому отраженный сигнал подвержен “Доплеровскому” эффекту, т.е. волна, отраженная от движущегося тела, имеет частоту колебаний отличную от частоты, посланной волны. Эта разница для диапазона 144 Мгц достигает 427 Гц.

Большое влияние на принимаемый сигнал оказывает также эффект “Фарадея”, т.е. вращение вектора поляризации передаваемого сигнала, который выражается в глубоких замираниях сигнала. Для устранения этого эффекта необходимы антенны с круговой поляризацией, которые трудно осуществимы в диапазоне 144 Мгц из конструктивных соображений.

Сильно влияют на прием сигналов метрового диапазона космические шумы, к примеру: минимальная шумовая температура небесной сферы на частоте 136 Мгц в феврале 1982 года составляла 210 градусов Кельвина или 2,35 db в точках минимума и 2750 градусов или 10,2 db в точках максимума.

Много проблем связано также с прозрачностью тропосферы и ионосферы Земли, атмосферными и местными электрическими помехами.

Ориентировочное затухание на трассе Земля-Луна-Земля для разных диапазонов можно выразить таблицей:

Положение Луны

Дистанция (тыс.км)

144 Мгц (db)

432 Мгц (db)

1296 Мгц (db)

Перигей

356,334

187,08

196,62

206,15

Апогей

406,610

188,21

197,76

207,21

Для того, чтобы перекрыть такое затухание, радиолюбитель, желающий заниматься E-M-E радиосвязями, должен сделать очень серьезную аппаратуру и антенны. Исходя из затухания на трассе и известных исходных данных приемника и передатчика, можно построить график усиления антенн для разных диапазонов радиоволн:

График из черновиков 1982 года!

При: TX = 700 watts

RX = 1 db

DF = 100 Hz

Как видно из графика, чтобы получить эхо своего сигнала с уровнем 1 db над шумами в диапазоне 144 Мгц надо, чтобы антенны (передающая и приемная) имели в сумме примерно 43 db, т.е. хорошая антенна для Е-М-Е должна иметь коэффициент усиления не менее 21,5 db. Хотя возможны радиосвязи при использовании антенн с меньшим усилением, так, для проведения радиосвязи с радиолюбителем K1WHS (антенна 24 х14 и К.У. равном 27db) вполне достаточно иметь антенну с усилением 15-16 db!

Для успешной Е-М-Е работы нужно четко знать положение Луны, время ее восхода и захода у Вас и Ваших партнеров. В этом очень помогает “Астрономический календарь” (ежегодник, переменная часть) и компьютерные программы, к примеру, “Orbitron”, которую можно скачать у нас >> У вас нет доступа к скачиванию файлов с нашего сервера

Радиолюбителю необходимо знать периоды перигея и апогея Луны и “окна” на Европу, Японию, Южную и Северную Америку. Необходимо знать дни, когда траектория Луны близка к траектории движения Солнца, т.к. проведение радиосвязи при разнице менее 30 градусов невозможно, из-за больших шумовых излучений Солнца.

При Лунной работе наблюдается также интересное явление, называемое “грунт-эффект”, т.е. на восходе и заходе Луны происходит заметное увеличение уровня отраженных сигналов на 1-3 db. Так, для квадрата “KN74BX”, наблюдался ярко выраженный эффект на заходе (в этом направлении равнина 40-50 км заканчивается Черноморским бассейном), на восходе “грунт-эффект” не наблюдался (холмистая местность, переходящая в гряду Крымских гор).

Очень интересным занятием при работе через Луну является проведение эхо-тестов. Это лучше делать за пределами Е-М-Е участка (144,000-144.015 Мгц). Передаётся серия точек или тире, лучше воспринимаются сочетания “BK”, “SK”, Примерно через 2,5 секунды принимается эхо-сигнал. Он будет в стороне по частоте (доплеровский эффект) не более 427 Гц. Эхо слышно не всегда и не постоянно, это зависит от условий. Если в данный момент времени эхо не слышно в Вашем QTH - это не значит, что сигнал не отражается и не принимается, например, в Африке или Америке. И наоборот – можно хорошо слышать своего партнера, свое эхо, а партнер в этот момент времени Вас не слышит. Опыты показали, что вполне приемлемым для Е-М-Е работы будет эхо с уровнем 1-2 db над шумами, принимаемое время от времени.

Василий Бекетов, UU2JJ

До сих пор мой опыт с любительским радио был ограничен исключительно работой на коротковолновых диапазонах (3-30 МГц). Однако радиолюбителям также доступны УКВ-диапазоны 2 метра (она же «двойка», 144-146 МГц) и 70 сантиметров (430-440 МГц). Работа в этих диапазонах имеет кое-какие нюансы. Если вы просто приобретете УКВ-рацию и покричите CQ на вызывной частоте с балкона, то, скорее всего, получите не самый удачный опыт. Вот о том, какие есть подводные грабли на УКВ и как их избежать, далее и пойдет речь.

Немного теории

Требуется сказать пару слов о терминологии, поскольку она немного запутана.

Ультракороткими волнами (УКВ) называется огромный диапазон частот от 30 МГц до 3000 ГГц. Он включает в себя диапазоны метровых волн (МВ, длина волны 1-10 метров, или в частотах — от 30 до 300 МГц) и дециметровых волн (ДМВ, длина волны 10-100 см, частота от 300 МГц до 3 ГГц). МВ также известны под именем ОВЧ, очень высокие частоты (VHF, very high frequency). Аналогично, другое название ДМВ — УВЧ, ультравысокие частоты (UHF, ultra high frequency). В английском языке часто используются термины VHF и UHF. В русском языке аббревиатуры ОВЧ и УВЧ почему-то не очень прижились, и часто говорят УКВ, имея ввиду оба диапазона. Далее по тексту под УКВ будут иметься ввиду исключительно радиолюбительские VHF и UFH диапазоны.

Как вам может быть известно, КВ преломляются в ионизированных слоях атмосферы и возвращаются на Землю. Благодаря этому на КВ возможны радиосвязи на тысячи и даже десятки тысяч километров . УКВ так не работают. Для них возможно тропосферное прохождение , но явление это сравнительно редкое. Поэтому обычно связь на УКВ возможна на небольшие расстояния, типично порядка 100 км. При использовании «экзотических» видов связи (например, через спутники) возможно провести QSO и на существенно большие расстояния. Но такие виды связи заслуживают собственных отдельный статей, поэтому пока что забудем о них.

Пусть УКВ не подходят для дальних связей, зато в плане стабильности им нет равных. Если есть связь на УКВ, то она есть 24/7, независимо от прохождения, и безо всяких там федингов, грозовых разрядов, и так далее. Кроме того, на УКВ нет проблем с высоким уровнем шума в эфире и «пайлапами».

Наличие между корреспондентами преград (высоких зданий, гор, и так далее) препятствует проведению радиосвязей на УКВ. Однако в городских условиях возможны радиосвязи посредством отражения радиосигнала от зданий. Допустим, ваш балкон выходит на восток и недалеко стоит высокое здание. Это здание может играть роль рефлектора, при помощи которого удастся связаться с корреспондентом, находящимся на западе. Также преграды можно обойти при помощи репитеров, о которых мы поговорим ниже.

Длины волн в УКВ-диапазонах существенно меньше, чем на КВ. За счет этого УКВ-антенны более компактны. Как следствие, большой популярностью пользуются носимые и автомобильные рации. Кроме того, на УКВ можно строить направленные антенны с большим коэффициентом усиления вполне вменяемого размера.

Ко всему сказанному следует добавить, что на УКВ обычно работают в FM. Это не то, чтобы было очень принципиально, но является еще одним отличием от КВ, где используется SSB.

Выбираем трансивер

Для УКВ существуют довольно дешевые рации китайского производства, например, от компании Baofeng. Но с такими рациями вас ждет целый ряд неудобств — низкое качество микрофона и динамика, урезанный функционал и неудобный для радиолюбительских целей интерфейс, малое время работы от аккумулятора, малая прочность корпуса, и так далее. Но хуже всего то, что такие рации часто не рассчитаны на работу с внешней антенной, установленной на крыше или балконе, а антенна на самой рации крайне неэффективна.

Проблема заключается в том, что Baofeng’и представляют собой не полноценные аналоговые трансиверы, а строятся на базе интегральной схемы RDA1846 (даташит ). Это схема имеет сравнительно небольшой динамический диапазон по блокированию. Это означает, что если вы подключите к рации внешнюю антенну, приемник скорее всего окажется заблокирован мощными сигналами от местных теле- и радиостанций. Теоретически, это решается при помощи дополнительных фильтров. Но с практической точки зрения куда проще воспользоваться рацией от другого производителя, например, Yaesu, ICOM или Kenwood.

Важно! С хорошей вероятностью никаких радиосвязий с помощью какой-нибудь Baofeng UV-5R вы не проведете. Проверено на личном горьком опыте.

При выборе трансивера будет не лишним поискать обзоры на интересующие вас модели. Многие радиолюбители выкладывают такие обзоры на YouTube. Список рекомендуемых YouTube-каналов ранее я приводил в заметке Проходим квест на получение позывного и регистрацию РЭС . Если новый трансивер не укладывается в ваш бюджет, имеет смысл ознакомиться с объявлениями о продаже Б/У трансиверов, например, на доске объявлений qrz.ru .

Именно так я и приобрел свою рацию, Kenwood TH-D72A (мануал ):

Это далеко не новое, но весьма качественное устройство. Оно особенно интересно тем, что является чуть ли не единственной настоящей full duplex рацией. То есть, пока вы передаете в диапазоне 2 м, рация может продолжать принимать и воспроизводить сигнал на втором канале в диапазоне 70 см (при включенной функции DUP). Это особенно удобно при работе теми самими «экзотическими» видами связи.

Также в рации есть GPS, поддержка APRS и наверняка какие-то еще полезные функции, в которых я пока не разобрался. Как и большинство портативных радиостанций, Kenwood TH-D72A работает на мощности не более 5 Вт. Как мы скоро убедимся, для работы на УКВ этого вполне достаточно.

Fun fact! Несмотря на то, что рация больше не производится, Kenwood продолжает выпускать для нее обновления прошивок .

Учитывая уникальность рации, тот факт, что владелец продавал ее вместе с зарядным устройством KSC-32, тангентой SMC-34, запасным аккумулятором и чехлом, а также крайне привлекательную цену, покупка была совершена безо всяких раздумий. Сделка прошла без проблем — устройство приехало быстро и в полностью исправном состоянии.

Делаем антенну

Дэфолтные антенны большинства портативных радиостанций ни на что не годятся. Антенна Kenwood TH-D72A — не исключение. Антенный анализатор EU1KY показывает следующие графики КСВ:

При построении таких графиков необходимо держаться за корпус антенного анализатора. Дело в том, что для нормальной работы антенне нужно человеческое тело, выполняющее роль противовеса. Если не держаться за корпус, графики получатся еще хуже. Как видите, резонанс немножечко промазал на двойке, всего-то на «какие-то» 15 МГц, а на 70 см КСВ не опускается ниже 2.4. В общем, антенна довольно скверная.

Было решено изготовить полноразмерную антенну на диапазон 2 метра и разместить ее на балконе. Во-первых, к такой антенне не будет вопросов по поводу ее эффективности. Во-вторых, можно будет спокойно работать на двойке зимой, находясь в тепле и уюте. В-третьих, по технике безопасности во время передачи рядом с антенной не должно быть людей. Сейчас это не так критично, поскольку я работаю на 5 Вт. Но в будущем я могу обзавестись трансивером и помощнее.

Схема подходящей антенны из кабеля RG58 была найдена в блогах австралийских радиолюбителей John, VK2ZOI и Andrew, VK1NAM :

Антенна представляет собой обыкновенный диполь , только расположенный вертикально. В отличие от КВ, на УКВ требуется следить за поляризацией. Обычно радиолюбители используют на УКВ вертикальную поляризацию, поэтому и требуется вертикальный диполь. Жила кабеля играет роль верхнего плеча антенны, а внешняя сторона экрана кабеля — роль нижнего плеча. Отсекающий дроссель представляет собой девять витков кабеля на каркасе 25 мм.

Fun fact! Иногда на УКВ работают в телеграфе и SSB, при этом принято использовать горизонтальную поляризацию. Однако большинство современных УКВ-трансиверов поддерживают только FM. Телеграф и SSB в основном поддерживаются в трансиверах, способных работать как на КВ, так и на УКВ. В качестве примеров таких трансиверов можно назвать Yaesu FT-991A и ICOM IC-7100. Цифровыми видами связи тоже работают, с той разницей, что их используют для дальних связей, и потому поляризация не важна.

Сначала был изготовлен походный вариант:

Антенна была сделана чуть длиннее, чем указано на схеме, а затем подрезана по минимуму КСВ на диапазоне:

Как видите, антенна имеет относительно неплохой резонанс и на 70 см. В этом диапазоне она работает на третьей гармонике. Это не лучшая антенна для 70 см, хотя бы по той причине, что отсекающий дроссель совершенно не рассчитан на эту частоту. В частности, при запитке антенны через пару метров коаксиального кабеля, график КСВ существенно изменяется. Но при необходимости антенна позволяет производить радиосвязи и в этом диапазоне (проверено!).

После настройки антенна была целиком помещена в трубу из ПВХ. С обоих концов труба была закрата кусочками губки, а сверху — накрыта крышкой. Крышку я напечатал на 3D-принтере , но с тем же успехом подошла бы крышка от кефира или кусочек стеклотекстолита. Все отверстия, кроме нижнего, были заклеены эпоксидкой. Нижнее отверстие я заклеивать не стал на случай, если в антенну все-таки как-то попадет влага. При таком раскладе ей будет куда стекать.

Антенна была закреплена на балконе аналогично тому, как ранее я закреплял КВ-антенну OPEK HVT-400B :

В отличие от КВ, на УКВ для питания антенн кабель RG58 не походит. Вместо него следует использовать RG213 или кабель с еще меньшими потерями . При использовании 10 метров RG58 аттенюация сигнала на 144 МГц составляет 1.82 дБ, а на 450 МГц — 3.65 дБ. У RG213 она составляет 0.86 дБ и 1.73 дБ соответственно. Впрочем, если кабель короткий, всего пара метров, то сойдет и RG58.

Выходим в эфир

Вызывная частота в диапазоне 2 метра — 145.500 МГц. Просто заходите, и делаете общий вызов, как на КВ. Отвечают не всегда. Но если так без особого фанатизма вызывать утром перед работой и вечером после, то люди регулярно отвечают. Конечно, при условии, что вы используете нормальный трансивер, эффективную антенну, и правильные кабели, как было описано выше.

На 70 см все чуточку интереснее. Официальной частотой общего вызова является 433.500 МГц. Однако данная частота попадает в LPD-диапазон 433.05-434.79 МГц и в Москве на ней стоит сильнейшая помеха. Альтернативной частотой является 432.500 МГц. Но эта частота попадает в интервал 430-433 МГц, который запрещено использовать в радиусе 350 км от центра Москвы. Насколько я смог выяснить, среди московских радиолюбителей есть договоренность использовать в качестве вызывной частоту 436.500 МГц. Также можно попробовать так называемую «аптечную» частоту, 436.600 МГц.

Fun fact! Как и на КВ, на УКВ встречаются радиохулиганы, многие из которых ведут себя в эфире, скажем так, некорректно. Моя жизненная философия — если встретил в эфире такого человека, ни о чем с ним не разговаривай и убедись, что стоишь как можно дальше по частоте:)

Эксперименты показывают, что в городских условиях диапазон 2 метра работает заметно лучше диапазона 70 см. Хотя радиосвязи удается провести и там, и там. Не исключаю также, что дело в моей антенне, которая не особо предназначенна для работы на 70 см.

Работаем через репитеры

Часто радиосвязи на УКВ проводятся через репитеры. Репитер — это устройство, которое принимает ваш сигнал на одной частоте и повторяет его на другой. Обычно антенна репитера устанавливается где-то высоко, где она может принять сигнал от многих радиолюбителей, а передача с репитера осуществляется на большой мощности. Это одна из причин, почему выше было сказано, что 5 Вт вполне достаточно для работы на УКВ. Задача сводится к тому, чтобы достучаться до репитера. А он уже обеспечит вам хорошую мощность и зону покрытия.

Часто репитеры «открываются» при помощи определенного тона. Тон — это низкочастотный сигнал, который подмешивается к вашему голосу при передаче. Основными стандартами передачи тона являются CTCSS и DCS .

Тон не является паролем к репитеру. Это скорее защита от дурака. Допустим, некий радиолюбитель находится на равном расстоянии между двумя репитерами, использующими одинаковые частоты. При помощи тона один из репитеров может понять, что радиолюбитель обращается к нему, и принять сигнал. Второй репитер, использующий другой тон, поймет, что сообщение адресовано не ему, и проигнорирует сигнал. Без тона радиолюбитель работал бы одновременно на двух репитерах, и, сам того не желая, мешал бы работе коллег.

Проще всего узнать о действующих локальных репитерах, спросив о них местных радиолюбителей. Также можно поискать по каталогам репитеров, хотя бы на том же qrz.ru . Но информация в каталогах зачастую либо устаревшая, либо попросту неверная.

Понятно, что для работы через репитер рацию необходимо соответствующим образом настроить. Рассмотрим эту настройку на конкретном примере. Знакомый радиолюбитель говорит, что в вашем городе работает репитер с входом на частоте 145.050 МГц и передачей на 145.650 МГц (канал R2), тон 88.5 Гц. Вы используете рацию Kenwood TH-D72A. Спрашивается, как попасть на репитер?

Нажимаем VFO и выставляем частоту 145.650 МГц. Идем в MENU → Radio → Repeater → Offset Freq, вводим здесь 0.6 МГц, то есть, разницу между частой передачи и приема репитера. Жмем зелененькую кнопку F, и затем SHIFT (находится на символе звездочки, слева от нуля). На экране загорается плюсик. Он означает, что при передаче к текущей частоте будет прибавляться указанная ранее offset frequency. Но нам нужно, чтобы частота вычиталась. Снова нажимаем F, затем SHIFT. Знак плюса сменился на минус. Можно проверить, что все работает, как нужно, быстро нажав и отпустив PTT. Во время передачи частота должна автоматически меняться на 145.050.

Настраиваем тон. Для этого нажимаем TONE (находится на цифре 8). Загорается буква T. Она означает, что рация будет передавать тон CTCSS, но не будет требовать его для открытия шумодава (squelch). Если вы хотите, чтобы рация проверяла тон и при приеме, вы можете перевести ее из режима T в режим CT повторным нажатием TONE. Таким же образом можно переключиться на использование DCS вместо CTCSS. Далее нажимаем кнопку F. Переходим к выбору Tone Freq. Указываем 88.5 Гц, сохраняем.

Теперь чтобы не потерять настройки, нажимаем F, и затем M.IN. Сохраняем в ячейку памяти. Теперь вы можете перейти из режима VFO в режим MR и переключаться между сохраненными каналами. Это намного удобнее, чем постоянно настраивать частоты и тона вручную. При желании ячейке можно присвоить имя в MENU → Memory → Name (работает только в режиме MR). Долгим нажатием MR можно перейти в режим непрерывного сканирования сохраненных каналов.

Если все было сделано правильно, теперь вас должны слышать люди на репитере. Проверить связь до репитера можно коротким нажатием PTT. После того, как вы отпустите PTT, репитер еще какое-то время будет передавать несущую, которую вы и услышите. Если несущей нет, то либо репитер не принимает ваш сигнал, либо был неправильно настроен тон, либо репитер не работает. Если несущая есть, то все хорошо.

Fun fact! При некоторой доли везения до репитера возможно достучаться 5-ю ваттами на антенну, расположенную внутри дома.

Понятно, что при использовании другой рации настройка будут отличаться. Но принцип будет таким же, и я думаю, что вы без труда разберетесь.

Заключение

Итак, вы вышли на УКВ. Что теперь? Можно на этом остановиться и просто общаться за жизнь с живущими неподалеку радиолюбителями. А можно научиться использовать APRS, проводить радиосвязи через спутники или EchoLink , принимать SSTV от МКС , установить собственный репитер, экспериментировать с антеннами, фильтрами , усилителями, цифровыми видами переди голоса (D-STAR, C4FM, DMR), трансиверами разных производителей, а может и самодельными. Возможно, вы даже захотите попробовать EME , то есть, проведение радиосвязей при помощи отражения радиоволн от Луны. В общем, у вас есть диапазон частот. Что вы будете на нем делать ограничено в основном вашей фантазией.

73 и до встречи на УКВ!

Дополнение: Замена штатной антенны Kenwood TH-D72A рассматривается в посте

Еще небольшое время назад для работы на диапазоне 144-145 МГц использовалась в основном самодельная аппаратура. Среди радиолюбителей были популярны УКВ - трансвертеры, многие из которых своими размерами были сравнимы с самим используемым с ним трансивером. Радиолюбители переделывали списанные промышленные УКВ-радиостанции типа «Пальма» на любительский УКВ диапазон 145 МГц, получая радиостанцию, работающую на нескольких каналах. Потом радиолюбителям стали доступны «Виолы», а позже и «Маяки», работающие на сорока каналах. Эти радиостанции тогда выглядели просто фантастически по своим возможностям!

В настоящее время можно сравнительно недорого приобрести многоканальные переносные УКВ трансиверы всемирно известных фирм – «YAESU», «KENWOOD», «ALINCO», которые по своим параметрам и удобству работы значительно превосходят как самодельную аппаратуру диапазона 145 МГц, так и переделанную промышленную – «Пальмы», «Маяки», «Виолы».

Но для работы через репитер из дома, офиса, во время движения при работе из автомобиля, необходима антенна более эффектная, чем используемая совместно с переносной радиостанцией «резинка». При использовании стационарной «фирменной» УКВ станции часто бывает целесообразно использовать с ней самодельную УКВ- антенну, так как приличная «фирменная» наружная антенна диапазона 145 Мгц стоит недешево.

Изготовлению простых самодельных антенн, пригодных к использованию со стационарными и переносными УКВ - радиостанциями и посвящен этот материал.

Особенности антенн диапазона 145 МГц

Ввиду того, что для изготовления антенн диапазона 145 Мгц обычно используют толстый провод – диаметром от 1 до 10 мм (иногда применяют и более толстые вибраторы, особенно в коммерческих антеннах), то антенны диапазона 145 Мгц широкополосны. Это часто позволяет при выполнении антенны точно по указанным размерам обойтись без ее дополнительной настройки на диапазон 145 МГц.

Для настройки антенн диапазона 145 Мгц необходимо иметь КСВ - метр. Это может быть как самодельный прибор, так и промышленного изготовления. На диапазоне 145 МГц радиолюбители практически не используют мостовые измерители сопротивления антенн, из-за кажущейся сложности их корректного изготовления. Хотя при аккуратном изготовлении мостового измерителя и, следовательно, корректной его работы на этом диапазоне, можно точно определить входное сопротивление УКВ антенн. Но даже используя только КСВ - метр проходного типа, вполне возможно настраивать самодельные УКВ-антенны. Мощности 0,5 Вт, которую обеспечивают импортные переносные радиостанции в режиме «LOW» и отечественные носимые радиостанции УКВ диапазона типа «Днепр», «Виола», «ВЭБР», вполне достаточно для работы многих типов КСВ метров. Режим «LOW» позволяет производить настройку антенн не опасаясь выхода из строя выходного каскада радиостанции при любом входном сопротивлении антенны.

Перед началом настройки УКВ антенны желательно убедиться в правильности показаний КСВ -метра. Неплохо иметь два КСВ -метра, рассчитанных для работы в трактах передачи 50 и 75 Ом. При настройке УКВ антенн желательно иметь контрольную антенну, в качестве которой может быть или «резинка» от переносной радиостанции или самодельный четвертьволновый штырь. При настройке антенны измеряют уровень напряженности поля создаваемый настраиваемой антенной относительно контрольной. Это дает возможность судить о сравнительной эффективности работы настраиваемой антенны. Конечно, если при измерениях использовать стандартный калиброванный измеритель напряженности поля, то можно получить точную оценку эффективности работы антенны. При использовании калиброванного измерителя поля несложно снять и диаграмму направленности антенны. Но даже используя при измерениях самодельные измерители напряженности поля и получив только качественную картину распределения напряженности электромагнитного поля, можно вполне сделать заключение об эффективности работы настраиваемой антенны и приближенно оценить ее диаграмму направленности. Рассмотрим практические конструкции УКВ-антенн.

Простые антенны

Наиболее простую наружную УКВ антенну (рис. 1) можно выполнить с использованием антенны, работающей совместно с переносной радиостанцией. На раме окна с наружной (рис. 2) или с внутренней стороны на удлиняющем деревянном бруске крепится металлический уголок, в центре которого установлено гнездо для подключения этой антенны. Необходимо стремиться к тому, чтобы коаксиальный кабель идущий до антенны был минимально необходимой длины. По краям уголка крепятся 4 противовеса длиной по 50 см. Необходимо обеспечить хороший электрический контакт противовесов, антенного разъема с металлическим уголком. Укороченная витая антенна радиостанции имеет входное сопротивление в пределах 30-40 Ом, так что для ее питания можно использовать коаксиальный кабель волновым сопротивлением 50 Ом. С помощью угла наклона противовесов можно в некоторых пределах менять входное сопротивление антенны, и, следовательно, провести согласование антенны с коаксиальным кабелем. Вместо фирменной «резинки» временно можно использовать антенну из медного провода диаметром 1-2 мм длиной 48 см, который вставляется в антенное гнездо своим остро заточенным концом.

Рисунок 1. Простая наружная УКВ антенна

Рисунок 2. Конструкция простой наружной УКВ антенны

Надежно работает УКВ антенна, выполненная из коаксиального кабеля со снятой внешней оплеткой. Кабель заделывается в ВЧ -разъем аналогичный разъему «фирменной» антенны (рис. 3). Длина коаксиального кабеля, используемого для изготовления антенны, равна 48 см. Такую антенну можно использовать совместно с переносной радиостанцией взамен поломанной или утерянной штатной антенны.

Рисунок 3. Простая самодельная УКВ антенна

Для быстрого изготовления выносной УКВ антенны можно использовать соединительный коаксиальный кабель длиной 2-3 метра, который оконечен разъемами, соответствующим антенному гнезду радиостанции и антенны. Антенну к такому куску кабеля можно подключить с помощью высокочастотного тройника (рис. 4). В этом случае с одного конца тройника подключается антенна- «резинка», а с другого конца тройника накручиваются противовесы длиной по 50 см или через разъем подключается другой тип радиотехнической «земли» для УКВ антенны.

Рисунок 4. Простая выносная УКВ антенна

Самодельные антенны переносной радиостанции

При утере или поломке штатной антенны переносной радиостанции можно выполнить самодельную витую УКВ антенну. Для этого используют основу – полиэтиленовую изоляцию коаксиального кабеля, диаметром 7-12 мм и длиной 10-15 см, на который намотано первоначально 50 см медного провода диаметром 1-1,5 мм. Для настройки витой антенны очень удобно использовать измеритель частотных характеристик, но можно использовать и обыкновенный КСВ - метр. Первоначально определяют резонансную частоту собранной антенны, затем, откусывая часть витков, сдвигая, раздвигая витки антенны, настраивают витую антенну в резонанс на 145 МГц.

Процедура эта не очень сложная, и, настроив 2-3 витые антенны, радиолюбитель может производить настройку новых витых антенн буквально за 5-10 минут, конечно, при наличии вышеуказанных приборов. После настройки антенны необходимо зафиксировать витки или с помощью изоленты, или с помощью кембрика, размоченного в ацетоне, либо с помощью термоусаживающей трубки. После закрепления витков необходимо еще раз проконтролировать частоту антенны и, если это необходимо, подстроить ее с помощью верхних витков.

Следует обратить внимание, на то, что в «фирменных» укороченных витых антеннах используют термоусаживающие трубки для фиксации проводника антенны.

Полуволновая полевая антенна

Для эффективной работы антенн длиной четверть волны необходимо использовать несколько четвертьволновых противовесов. Это усложняет конструкцию для полевой четвертьволновой антенны, которая должна быть вынесена в пространстве относительно УКВ трансивера. В этом случае можно использовать УКВ антенну электрической длиной L/2, которая не требует для своей работы противовесов, и обеспечивает прижатую к земле диаграмму направленности и простоту установки. Для антенны электрической длиной L/2 стоит проблема согласования ее высокого входного сопротивления с низким волновым сопротивлением коаксиального кабеля. Антенна длиной L/2 и диаметром 1 мм будет иметь входное сопротивление на диапазоне 145 МГц около 1000 Ом. Согласование с помощью четвертьволнового резонатора, оптимальное в этом случае, не всегда удобно практически, так как требует подбора точек подключения коаксиального кабеля к резонатору для своей эффективной работы и точной настройки штыря антенны в резонанс. Также относительно велики и размеры резонатора для диапазона 145 МГц. Дестабилизирующие факторы на антенну при ее согласовании при помощи резонатора будут проявляться особенно сильно.

Однако при небольших мощностях, подводимых к антенне, вполне удовлетворительное согласование можно достигнуть при помощи П - контура, аналогично как это описано в литературе . Схема полуволновой антенны и ее согласующего устройства показана на рис. 5. Длина штыря антенны выбирается немного короче или длиннее длины L/2. Это необходимо для того, что уже при небольшом отличии электрической длины антенны от L/2 активное сопротивление импеданса антенны заметно понижается, а реактивная его часть на начальном этапе возрастает незначительно. Вследствие этого возможно согласование с помощью П - контура такой укороченной антенны с большей эффективностью, чем согласование антенны длиной ровно L/2. Предпочтительно использовать антенну длиной немного большей чем L/2.

Рисунок 5. Согласование УКВ антенны с помощью П – контура

В согласующем устройстве были использованы воздушные подстроечные конденсаторы типа КПВМ-1. Катушка L1 содержит 5 витков посеребренного провода диаметром 1 мм, намотанного на оправке диаметром 6 мм и шагом 2 мм.

Настройка антенны не сложна. Включив в тракт кабеля антенны КСВ - метр и одновременно измеряя уровень напряженности поля, создаваемого антенной, с помощью изменения емкости переменных конденсаторов С1 и С2, сжатия-растяжения витков катушки L1 добиваются минимальных показаний КСВ -метра и соответственно максимальных показаний измерителя напряженности поля. Если эти два максимума не будут совпадать, необходимо немного изменить длину антенны, и снова повторить ее настройку.

Согласующее устройство было размещено в корпусе, спаянном из фольгированного стеклотекстолита размерами 50*30*20 мм. При работе из стационарного рабочего места радиолюбителя антенна может быть размещена в проеме окна. При работе в полевых условиях антенна может быть подвешена за верхний конец на дерево с помощью лески, как это показано на рис. 6. Для питания антенны можно использовать 50-oмный коаксиальный кабель. Использование 75-oмного коаксиального кабеля несколько увеличит КПД согласующего устройства антенны, но в то же время потребует настройки выходного каскада радиостанции для работы на нагрузку 75 Ом.

Рисунок 6. Установка антенна для работы в полевых условиях

Оконные антенны на основе фольги

На основе клеящейся фольги, используемой в системах охранной сигнализации можно построить очень простые конструкции оконных УКВ антенн. Такую фольгу можно приобрести уже с клеевой основой. Тогда освободив одну сторону фольги от защитного слоя, ее достаточно просто прижать к стеклу и фольга моментально надежно приклеивается. Фольгу без клеевой основы можно приклеить к стеклу при помощи лака или клея типа «Момент». Но для этого необходимо иметь некоторый навык. Фольгу можно даже закрепить на окне при помощи липкой ленты.

При соответствующей тренировке вполне возможно осуществить качественное паяное соединение центральной жилы и оплетки коаксиального кабеля с алюминиевой фольгой. Исходя из личного опыта, каждый тип такой фольги требует для пайки своего флюса. Некоторые типы фольги хорошо паяются даже с использованием только канифоли, некоторые удается паять с помощью паяльного жира, другие типы фольги требуют использования активных флюсов. Флюс необходимо испытывать на конкретном типе фольги, используемом для изготовления антенны, заблаговременно до ее установки.

Хорошие результаты дает использование подложки из фольгированного стеклотекстолита для пайки и крепления фольги, как это показано на рис. 7. Кусочек фольгированного стеклотекстолита с помощью клея «Момент» приклеивается к стеклу, к краям фольги припаивается фольга антенны, жилы коаксиального кабеля припаиваются к медной фольге стеклотекстолита на небольшом удалении от фольги. После пайки соединение необходимо защитить при помощи влагостойкого лака или клея. В противном случае возможна коррозия этого соединения.

Рисунок 7. Подключение фольги антенны к коаксиальному кабелю

Разберем практические конструкции оконных антенн построенных на основе фольги.

Вертикальная оконная дипольная антенна

Схема вертикальной дипольной оконной УКВ антенны на основе фольги показана на рис. 8.

Рисунок 8. Оконная вертикальная дипольная УКВ антенна

Четвертьволновый штырь и противовес расположены под углом 135 градусов для того, чтобы входное сопротивление антенной системы приближалось к 50 Ом. Это дает возможность использовать для питания антенны коаксиальный кабель волновым сопротивлением 50 Ом и использовать антенну совместно с переносными радиостанциями, выходной каскад которых имеет такое входное сопротивление. Коаксиальный кабель должен идти перпендикулярно антенне по стеклу так долго, как это возможно.

Рамочная оконная антенна на основе фольги

Эффективнее дипольной вертикальной антенны будет работать рамочная оконная УКВ антенна, показанная на рис. 9. При питании антенны с бокового угла максимум излучаемой поляризации расположен в вертикальной плоскости, при питании антенны в нижнем угле максимум излучаемой поляризации находится в горизонтальной плоскости. Но при любом положении точек питания антенна излучает радиоволну, с комбинированной поляризацией, как с вертикальной, так и с горизонтальной. Это обстоятельство весьма благоприятно для связи с переносными и передвижными радиостанциями, положение антенн которых во время движения будет меняться.

Рисунок 9. Рамочная оконная УКВ антенна

Входное сопротивление оконной рамочной антенны составляет 110 Ом. Для согласования этого сопротивления с коаксиальным кабелем волновым сопротивлением 50 Ом используется четвертьволновая секция из коаксиального кабеля волновым сопротивлением 75 Ом. Кабель должен идти перпендикулярно оси антенны так долго, как это возможно. Рамочная антенна имеет усиление примерно на 2 дБ выше относительно дипольной оконной антенной.

При выполнении оконных антенн из фольги шириной 6-20 мм, они не требуют настройки и работают в диапазоне частот значительно более широком, чем любительский диапазон 145 МГц. Если полученная резонансная частота антенн оказалась ниже требуемой, то диполь можно настроить, отрезая симметрично фольгу с его концов. Рамочную антенну можно настроить, используя перемычку из той же фольги, что была использована для изготовления антенны. Фольга замыкает полотно антенны в углу, напротив точек питания. После настройки, контакт перемычки с антенной может быть обеспечен или при помощи пайки или при помощи клейкой липкой ленты. Такая липкая лента должна достаточно сильно прижать перемычку к полотну антенны для того чтобы обеспечить надежный электрический контакт с ней.

К антеннам, выполненным из фольги, можно подводить значительные уровни мощности – до 100 и более ватт.

Наружная вертикальная антенна

При размещении антенны снаружи помещения всегда встает вопрос о защите раскрыва коаксиального кабеля от атмосферных воздействий, об использовании качественного антенного опорного изолятора, влагостойкого провода для антенн и т.д. Эти проблемы можно решить, выполнив защищенную наружную УКВ антенну. Конструкция такой антенны показана на рис. 10.

Рисунок 10. Защищенная наружная УКВ антенна

В центре пластиковой водопроводной трубы длиной 1 метр проделывается отверстие, в которое может туго войти коаксиальный кабель. Затем кабель туда продевается, высовывается из трубы, оголяется на расстоянии 48 см, экран кабеля скручивается и опаивается на длине 48 см. Кабель с антенной заводится обратно в трубу. Сверху и снизу на трубу одеваются стандартные заглушки. Влагоизолировать отверстие, куда входит коаксиальный кабель не представляет особого труда. Это можно сделать с помощью автомобильного силиконового герметика или быстро твердеющей автомобильной эпоксидки. В результате получаем красивую, влагоизолированную защищенную антенну, которая многие годы может работать под действием атмосферных воздействий.

Для фиксации вибратора и противовеса антенны внутри можно использовать 1-2 картонные или пластиковые шайбы, плотно надетые на вибраторы антенны. Трубу с антенной можно установить на оконную раму, на неметаллическую мачту, или разместить в другом удобном месте.

Простая коаксиальная коллинеарная антенна

Простая коллинеарная коаксиальная УКВ антенна может быть выполнена из коаксиального кабеля. Для защиты этой антенны от атмосферных воздействий может быть использован отрезок водопроводной трубы, как это было описано в предыдущем параграфе. Конструкция коллинеарная коаксиальная УКВ антенны показана на рис. 11.

Рисунок 11. Простая коллинеарная УКВ антенна

Антенна обеспечивает теоретическое усиление не менее чем на 3 дБ большее по сравнению с четвертьволновым вертикалом. Она не нуждается в противовесах для своей работы (хотя их наличие улучшает работу антенны) и обеспечивает прижатую диаграмму направленности к горизонту. Описание такой антенны неоднократно появлялось на страницах отечественной и зарубежной радиолюбительской литературы, но наиболее удачное описание было представлено в литературе .

Размеры антенны на рис. 11 указаны в сантиметрах для коаксиального кабеля с коэффициентом укорочения равным 0,66. Такой коэффициент укорочения имеют большинство коаксиальных кабелей с полиэтиленовой изоляцией. Размеры согласующей петли показаны на рис. 12. Без использования этой петли КСВ антенной системы может превышать 1,7. Если антенна оказалась настроенной ниже диапазона 145 МГц необходимо немного укоротить верхнюю секцию, если выше, то удлинить ее. Конечно, оптимальная настройка возможная пропорциональным укорочением-удлинением всех частей антенны, но это сложно проделать в радиолюбительских условиях.

Рисунок 12. Размеры согласующей петли

Несмотря на большие размеры пластиковой трубы, необходимой для защиты этой антенны от атмосферных воздействий, использование коллинеарной антенны такой конструкции вполне целесообразно. Антенна может быть вынесена в сторону от здания с помощью деревянных реек, как это показано на рис. 13. Антенна может выдержать значительные подводимые к ней мощности до 100 и более ватт и может быть использована совместно как со стационарными так и с переносными УКВ -радиостанциями. Использование такой антенной совместно с маломощными носимыми радиостанциями даст наибольший эффект.

Рисунок 13. Установка коллинеарной антенны

Простая коллинеарная антенна

Эта антенна была собрана мной подобно конструкции автомобильной выносной антенны используемой в сотовом радиотелефоне. Для переделки ее на любительский диапазон 145 МГц мной были изменены пропорционально все размеры «телефонной» антенны. В результате этого получилась антенна, схема которой показана на рис. 14. Антенна обеспечивает прижатую к горизонту диаграмму направленности и теоретическое усиление не менее 2 дБ над простым четвертьволновым штырем. Для питания антенны использовался коаксиальный кабель волновым сопротивлением 50 Ом.

Рисунок 14. Простая коллинеарная антенна

Практическая конструкция антенны показана на рис. 15. Антенна была выполнена из целого отрезка медного провода диаметром 1мм. Катушка L1 содержала 1 метр этого провода, намотанного на оправке диаметром 18 мм, расстояние между витками было равно 3 мм. При выполнении конструкции точно по размерам антенна практически не требует наладки. Возможно, понадобится небольшая подстройка антенны сжатием-растяжением витков катушки для достижения минимального КСВ. Антенна была размещена в пластиковый водопроводной трубе. Внутри трубы антенный провод был зафиксирован с помощью кусочков пенопласта. На нижнем конце трубы были установлены четыре четвертьволновых противовеса. На них была нарезана резьба, и они с помощью гаек были закреплены на пластиковой трубе. Противовесы могут быть диаметром 2-4 мм в зависимости от возможности нарезать на них резьбу. Для их изготовления можно применить медный, латунный, или бронзовый провод.

Рисунок 15. Конструкция простой коллинеарной антенны

Антенна может быть установлена на деревянных рейках на балконе (как это показано на рис. 13). Эта антенна может выдержать значительные уровни подводимой к ней мощности.

Эту антенну можно рассматривать как укороченную антенну КВ диапазона с центральной удлиняющей катушкой. Действительно, измеренный с помощью мостового измерителя сопротивления резонанс антенны в диапазоне КВ оказался лежащим в районе частоты 27,5 МГц. Очевидно, что варьируя диаметром катушки и ее длиной, но сохранив при этом длину провода ее намотки можно добиться того, чтобы антенна работала как в УКВ диапазоне 145 МГц, так и в одном из КВ диапазонов – 12 или 10 метров. Для работы на КВ диапазонах к антенне необходимо подключить четыре противовеса длиной L/4 для выбранного КВ диапазона. Такое двойное использование антенны сделает ее еще более универсальной.

Экспериментальная 5/8-волновая антенна

При проведении экспериментов с радиостанциями диапазона 145 МГц часто бывает необходимо подключить к ее выходному каскаду испытываемую антенну, чтобы проверить работу тракта приема радиостанции или настроить выходной каскад передатчика. Для этих целей мной долгое время используется простая 5/8 – волновая УКВ антенна, описание которой было приведено в литературе .

Эта антенна состоит из секции медного провода диаметром 3 мм, который одним концом соединен с удлиняющей катушкой, а другой с настроечной секцией. На конце провода соединенном с катушкой нарезана резьба, а на другом конце припаяна настроечная секция из медного провода диаметром 1 мм. Согласуется антенна с коаксиальным кабелем волновым сопротивлением 50 или 75 Ом путем подключения к разным виткам катушки, и может быть небольшим укорочением настроечной секции. Схема антенны показана на рис. 16. конструкция антенны показана на рис. 17.

Рисунок 16. Схема простой 5/8 – волновой УКВ антенны

Рисунок 17. Конструкция простой 5/8 – волновой УКВ антенны

Катушка выполнена на плексигласовом цилиндре диаметром 19 мм и длиной 95 мм. В торцах цилиндра сделана резьба, в которую с одной стороны ввинчивается вибратор антенны, а с другой стороны она прикручивается к куску фольгированного стеклотекстолита размерами 20*30 см, который служит «землей» антенны. С задней стороны к нему был приклеен магнит от старого динамика, в результате чего антенна может крепиться к подоконнику, к батарее отопления, к другим железным предметам.

Катушка содержит 10,5 витка провода диаметром 1 мм. Провод катушки равномерно размещен по каркасу. Отвод к коаксиальному кабелю осуществлен от четвертого витка от заземленного конца. Вибратор антенны ввинчивается в катушку, под него вставляется контактная ламель, к которой припаивается «горячий» конец удлиняющей катушки. Нижний конец катушки припаивается к фольге «земли» антенны. Антенна обеспечивает КСВ в кабеле не хуже чем 1:1,3. Настройка антенны осуществляется путем укорочения с помощью кусачек ее верхней части, которая первоначально выполняется чуть длиннее, чем необходимо.

Мной были проведены эксперименты по установке этой антенны на оконном стекле. В этом случае вибратор первоначальной длиной 125 сантиметров из алюминиевой фольги был приклеен по центру окна. Удлиняющая катушка использовалась та же, и была установлена на раме окна. Противовесы были выполнены из фольги. Концы антенны и противовесов были немного загнуты, чтобы поместиться на оконном стекле. Вид оконной 5/8 – волновая УКВ антенна показан на рис. 18. Антенна легко настраивается в резонанс постепенным укорочением фольги вибратора с помощью лезвия, и постепенным переключением витков катушки по минимуму КСВ. Оконная антенна не портит интерьера комнаты и может использоваться в качестве постоянной антенна для работы на диапазоне 145 МГц из дома или офиса.

Рисунок 18. Оконная 5/8 – волновая УКВ антенна

Эффективная антенна переносной радиостанции

В том случае, когда связь с использованием стандартной «резинки» невозможна, можно использовать полуволновую антенну. Она не требует для своей работы «земли» и при работе на большие расстояния дает выигрыш по сравнению со стандартной «резинкой» до 10 дБ. Это вполне реальные цифры, учитывая, что физическая длина полуволновой антенны почти в 10 раз длиннее «резинки».

Полуволновая антенна питается напряжением и имеет высокое входное сопротивление, которое может достигать 1000 Ом. Следовательно, эта антенна требует согласующего устройства при использовании совместно с радиостанцией имеющей 50-омный выход. Один из вариантов согласующего устройства на основе П- контура уже был описан в этой главе. Поэтому, для разнообразия, для этой антенны мы рассмотрим использование другого согласующего устройства, выполненного на параллельном контуре. По эффективности своей работы эти согласующие устройства примерно равны. Схема полуволновой УКВ антенны совместно с согласующим устройством на параллельном контуре показана на рис. 19.

Рисунок 19. Полуволновая УКВ антенна с согласующим устройством

Катушка контура содержит 5 витков медного посеребренного провода диаметром 0,8 мм, намотанных на оправке диаметром 7 мм по длине 8 мм. Настройка согласующего устройства заключается в настройке с помощью переменного конденсатора С1 контура L1С1 в резонанс, с помощью переменного конденсатора С2 регулируется связь контура с выходом передатчика. Первоначально конденсатор подключается в третьему витку катушки от ее заземленного конца. Переменные конденсаторы С1 и С2 должны быть с воздушным диэлектриком.

Для вибратора антенны целесообразно использовать телескопическую антенну. Это даст возможность переносить полуволновую антенну в компактном сложенном состоянии. Также это упрощает настройку антенны совместно с реальным трансивером. При первоначальной настройке антенны ее длина составляет 100 см. В процессе настройки эта длина может быть немного скорректирована по лучшей работе антенны. Желательно сделать соответствующие отметки на антенне, чтобы впоследствии со свернутого ее положения устанавливать антенну сразу на резонансную длину. Коробка, где расположено согласующее устройство, должна быть выполнена из пластика, чтобы уменьшить емкость катушки на «землю», может быть выполнена из фольгированного стеклотекстолита. Это зависит от реальных эксплуатационных условий антенны.

Настройка антенны производится с помощью индикатора напряженности поля. С помощью КСВ - метра настройка антенны целесообразна лишь в случае ее работы не на корпусе радиостанции, а при использовании совместно с ней удлиняющего коаксиального кабеля.

При двойной работе антенны на корпусе радиостанции и с использованием удлиняющего коаксиального кабеля на штыре антенны делают две отметки, соответствующие одна – максимальному уровню напряженности поля, при работе антенны на корпусе радиостанции, а другая риска соответствует минимальному КСВ при использовании совместно с антенной удлиняющего коаксиального кабеля. Обычно эти две отметки немного не совпадают.

Вертикальные неразрывные антенны с гамма согласованием

Вертикальные антенны выполненные из целого вибратора ветроустойчивы, легки в установке, и занимают мало места. Для их выполнения можно использовать медные трубки, алюминиевый силовой электрический провод диаметром 6-20 мм. Эти антенны достаточно просто можно согласовать с коаксиальным кабелем волновым сопротивлением как 50 так и 75 Ом.

Очень простая в выполнении и легкая в настройке является неразрывная полуволновая УКВ антенна, конструкция которой показана рис. 20. Для ее питания через коаксиальный кабель используется гамма согласование. Материал, из которого выполнен вибратор антенны и гамма согласование должен быть один и тот же например, медь или алюминий. Из-за взаимной электрохимической коррозии многих пар материалов недопустимо использовать разные металлы для выполнения антенны и гамма согласования.

Рисунок 20. Неразрывная полуволновая УКВ антенна

Если для выполнения антенны использована медная голая трубка, то настраивать гамма согласование антенны целесообразно с помощью замыкающей перемычки как это показано на рис. 21. В этом случае поверхность штыря и проводника гамма согласования тщательно зачищается и с помощью хомута из голой проволоки как это показано на рис. 21а добиваются минимального КСВ в коаксиальном кабеле питания антенны. Затем в этом месте провод гамма согласования немного расплющивается, просверливается и соединяется винтом с полотном антенны, как это показано на рис. 21б. Возможно также использовать пайку.

Рисунок 21. Настройка гамма - согласования медной антенны

Если для антенны использован алюминиевый провод из силового электрического кабеля в пластиковой изоляции, то целесообразно эту изоляцию оставить для предотвращения коррозии алюминиевого провода кислотными дождями, которые неизбежны в городских условиях. В этом случае гамма согласование антенны подстраивается с помощью переменного конденсатора, как это показано на рис. 22. Этот переменный конденсатор необходимо тщательно защитить от влаги. Если не удается достичь КСВ в кабеле меньше 1,5, то длину гамма согласования необходимо уменьшить и повторить настройку еще раз.

Рисунок 22. Настройка гамма – согласования алюминиево-медной антенны

При наличии достаточного места и материалов можно установить неразрывную вертикальную волновую УКВ антенну. Волновая антенна работает эффективнее полуволновой антенны, показанной на рис. 20. Волновая антенна обеспечивает более прижатую к горизонту диаграмму направленности чем полуволновая антенна. Согласовать волновую антенну можно с помощью способов, показанных на рис. 21 и 22. Конструкция волновой антенны показана на рис. 23.

Рисунок 23. Неразрывная вертикальная волновая УКВ антенна

При выполнении этих антенн желательно чтобы коаксиальный кабель питания был перпендикулярен антенне хотя бы 2 метра. Использование симметрирующего устройства совместно с неразрывной антенной увеличит эффективность ее работы. При использовании симметрирующего устройства необходимо использовать симметричное гамма согласование. Подключение симметрирующего устройства показано на рис. 24.

Рисунок 24. Подключение симметрирующего устройства к неразрывной антенне

В качестве симметрирующего устройства антенны также можно использовать и любое другое известное симметрирующее устройство. При размещении антенны около проводящих предметов возможно придется несколько уменьшить длину антенны из-за влияния на нее этих предметов.

Круглая УКВ антенна

Если размещение в пространстве вертикальных антенн, показанных на рис. 20 и рис. 23 в их традиционном вертикальном положении затруднено, то можно их разместить, свернув полотно антенны в круг. Положение полуволновой антенны показанной на рис. 20 в «круглом» варианте показано на рис. 25, а волновой антенны показанной на рис. 23 на рис. 26. В таком положении антенна обеспечивает комбинированную поляризацию вертикальную и горизонтальную, что благоприятно для проведения связей с передвижными и носимыми радиостанциями. Хотя, теоретически уровень вертикальной поляризации будет выше при боковом питании круглых УКВ антенн, но на практике это различие не сильно заметно, а боковое питание антенны усложняет ее установку. Боковое питание круглой антенны показано на рис. 27.

Рисунок 25. Неразрывная круглая вертикальная полуволновая УКВ антенна

Рисунок 26. Неразрывная круглая вертикальная волновая УКВ антенна

Рисунок 27. Боковое питание круглых УКВ антенн

Круглая УКВ антенна может быть размещена внутри помещения, например, между рамами окна, или вне помещения, на балконе или на крыше. При размещении круглой антенны в горизонтальной плоскости получим круговую диаграмму направленности в горизонтальной плоскости и работу антенны с горизонтальной поляризацией. Это может быть необходимо в некоторых случаях при проведении радиолюбительских связей.

Пассивный «усилитель» переносной станции

При испытании переносных радиостанций или работе с ними порой не хватает еще «чуть-чуть» мощности для надежной связи. Мной был выполнен пассивный «усилитель» для переносных УКВ станций. Пассивный «усилитель» может добавить до 2-3 дБ к сигналу радиостанции в эфире. Этого часто достаточно чтобы надежно открыть шумоподавитель станции корреспондента и обеспечить уверенную работу. Конструкция пассивного «усилителя» показана на рис. 28.

Рисунок 28. Пассивный «усилитель»

Пассивный «усилитель» представляет собой луженую жестяную банку из-под кофе достаточно больших размеров (чем больше, тем лучше). В дно банки вставлен разъем, аналогичный антенному разъему радиостанции, а в крышку банки запаян разъем для соединения с антенным гнездом. К банке припаяны 4 противовеса длиной 48 см. При работе с радиостанцией этот «усилитель» включается между штатной антенной и радиостанцией. За счет более эффективной «земли» и происходит увеличение в месте приема силы излучаемого сигнала. Совместно с этим «усилителем» можно использовать и другие антенны, например, L/4 штырь из медной проволоки, просто вставленный в антенное гнездо.

Широкополосная обзорная антенна

Многие импортные переносные радиостанции обеспечивают работу на прием не только в любительском диапазоне 145 МГц, но и в обзорных диапазонах 130-150 МГц или 140-160 МГц. В этом случае для успешного приема в обзорных диапазонах, на которых витая антенна, настроенная на 145 МГц, работает неэффективно можно использовать широкополосную УКВ антенну. Схема антенны приведена на рис. 29 а размеры для разных диапазонов работы даны в табл. 1.

Рисунок 29. Широкополосный УКВ вибратор

Диапазон, МГц 130-150 140-160
Размер А, см 26 24
Размер Б, см 54 47

Таблица 1. Размеры широкополосной УКВ антенны

Для работы с антенной можно использовать коаксиальный кабель волновым сопротивлением 50 Ом. Полотно антенны может быть выполнено из фольги, и наклеено на окно. Можно выполнить полотно антенны из алюминиевого листа, или печатным способом на куске фольгированного стеклотекстолита подходящих размеров. Эта антенна может работать на прием и на передачу в указанных диапазонах частот с высокой эффективностью.

Зигзагообразная антенна

В некоторых служебные УКВ радиостанциях дальней связи используются антенные решетки состоящие из зигзагообразных антенн. Радиолюбители тоже могут попробовать использовать элементы такой антенной системы для своей работы. Вид элементарной зигзагообразной антенны, входящей в конструкцию сложной УКВ антенны показан на рис. 30.

Рисунок 30. Элементарная зигзагообразная антенна

Зигзагообразная элементарная антенна состоит из полуволновой дипольной антенны, которая питает напряжением полуволновые вибраторы. В реальных антеннах используется до пяти таких полуволновых вибратора. Такая антенна имеет узкую прижатую к горизонту диаграмму направленности. Вид поляризации излучаемый антенной комбинированный – вертикальный и горизонтальный. Для работы антенны желательно использовать симметрирующее устройство.

В антеннах используемых в служебных станциях связи за элементарными зигзагообразными антеннами обычно помещают рефлектор, выполненный из металлической сетки. Рефлектор обеспечивает одностороннюю направленность антенны. В зависимости от числа вибраторов, включенных в антенну и количества включенных вместе зигзагообразных антенн можно получить необходимый коэффициент усиления антенны.

Радиолюбители практически не используют такие антенны, хотя их несложно выполнить для любительских УКВ диапазонов 145 и 430 МГц. Для изготовления полотна антенны можно использовать алюминиевый провод диаметром 4-12 мм от силового электрического кабеля. В отечественной литературе описание подобной антенны, для полотна которой был использован жесткий коаксиальный кабель, было приведено в литературе .

Антенна Харченко в диапазоне 145 МГц

Антенна Харченко широко используется в России для приема телевидения и в служебной радиосвязи. Но радиолюбители ее используют для работы на диапазоне 145 МГц. Эта антенна является одной из немногих, которая работает весьма эффективно, и практически не требует настройки. Схема антенны Харченко показана на рис. 31.

Рисунок 31. Антенна Харченко

Для работы антенны можно использовать как 50, так и 75-Омный коаксиальный кабель. Антенна широкополосная, работает в полосе частот не менее 10 МГц на диапазоне 145 МГц. Для создания односторонней диаграммы направленности используют сзади антенны металлическую сетку, расположенную на расстоянии (0,17-0,22)L.

Антенна Харченко обеспечивает ширину лепестка диаграммы направленности в вертикальной и горизонтальной плоскости близкую к 60 градусов. Для еще большего сужения диаграммы направленности используют пассивные элементы в виде вибраторов длиной 0,45L, расположенных на расстоянии 0,2L от диагонали квадрата рамок. Для создания узкой диаграммы направленности и увеличения коэффициента усиления антенной системы используют несколько объединенных антенн.

Рамочные направленные антенны диапазона 145 МГц

Одними из наиболее популярных направленных антенн для работы в диапазоне 145 МГц являются рамочные антенны. Наиболее распространены на диапазоне 145 МГц двухэлементные рамочные антенны. В этом случае получается оптимальное соотношение «затраты/качество». Схема двухэлементной рамочной антенны а также размеры периметра рефлектора и активного элемента показаны на рис. 32.

Рисунок 32. Рамочная УКВ антенна

Элементы антенны могут быть выполнены не только в виде квадрата но и в виде круга, дельты. Для увеличения излучения вертикальной составляющей антенна может быть запитана сбоку. Входное сопротивление двухэлементной антенны близко к 60 Ом, и для работы с ней подходит как 50-Омный, так и 75-Омный коаксиальный кабель. Коэффициент усиления двухэлементной рамочной УКВ антенны составляет не менее 5 дБ (над диполем) и отношение излучения в прямом и обратном направлении может достигать 20 дБ. При работе с этой антенной полезно использовать симметрирующее устройство.

Рамочная антенна с круговой поляризацией

Интересная конструкция рамочной антенны с круговой поляризацией была предложена в литературе . Антенны, имеющую круговую поляризацию используют для связи через ИСЗ. Двойное питание рамочной антенны со сдвигом фаз 90 градусов позволяет синтезировать радиоволну, имеющую круговую поляризацию. Схема питания рамочной антенны показана на рис. 33. При конструировании антенны необходимо учитывать, что длина L может быть любой разумной, а длина L/4 должна соответствовать длине волны в кабеле.

Рисунок 33. Рамочная антенна с круговой поляризацией

Для увеличения коэффициента усиления эту антенну можно использовать совместно с рамочными рефлектором и директором. Рамку необходимо питать только через симметрирующее устройство. Простейшее симметрирующее устройство показано на рис. 34.

Рисунок 34. Простейшее симметрирующее устройство

Промышленные антенны диапазона 145 МГц

В настоящее время в продаже можно найти большой выбор фирменных антенн для диапазона 145 МГц. При наличии денег, конечно, можно покупать любую из этих антенн. Следует учесть, что желательно приобретать цельные антенны, уже настроенные на диапазон 145 МГц. Антенна должна иметь защитное покрытие предохраняющее ее от коррозии кислотными дождями, которые могут выпадать в современном городе. Телескопические антенны в условиях эксплуатации города ненадежны и со временем могут выйти из строя.

При сборке антенн необходимо строго соблюдать все указания в инструкции по сборке, и не жалеть силиконовую смазку для гидроизоляции разъемов, телескопических соединений и винтовых соединений в согласующих устройствах.

Литература

  1. И. Григоров (RK3ZK). Согласующие устройства диапазона 144 МГц//Радиолюбитель. КВ и УКВ.-1997.-№ 12.-С.29.
  2. Barry Bootle. (W9YCW) Hairpin Match for the Collinear – Coaxial Arrau//QST.-1984.-October.-P.39.
  3. Doug DeMaw (W1FB) Build Your Own 5/8-Wave Antenna for 146 MHz//QST.-1979.-June.-P.15-16.
  4. С. Бунин. Антенна для связи через ИСЗ // Радио.- 1985.- № 12.-С. 20.
  5. D.S.Robertson ,VK5RN The “Quadraquad” – Circular Polarization the Easy Way //QST.-April.-1984.-pages16-18.

Американские радиолюбители используют следующие вызывные частоты для DX-экспедиций (в кГц):

  • 1828.5,
  • 3505,
  • 7005,
  • 7065,
  • 10110,
  • 14025,
  • 14195,
  • 18075,
  • 18145,
  • 21025,
  • 21295,
  • 24895,
  • 24945,
  • 28025,
  • 28495.

Вызывные частоты для QRP-станций (в кГц):

  • 1810,
  • 3560,
  • 10106,
  • 14060,
  • 14285,
  • 21060,
  • 21385,
  • 28060,
  • 28385.

В Европе и некоторых других странах для работы малой мощностью (QRP) в режиме SSB рекомендуется использовать частоты (кГц):

  • 3690,
  • 7090,
  • 14285,
  • 21285.

Для телеграфа (в кГц) :

  • 1843,
  • 3560,
  • 7030,
  • 10106,
  • 14060,
  • 18096,
  • 21060,
  • 24906,
  • 28060.

Частоты для DX-экспедиций в Европе пока не оговорены.

SSB-QRP круглые столы проводятся на частоте 3620 кГц в 18:30 MEZ (MES).

Западные радиолюбители , поддерживающие программу SOTA, используют частоты (кГц):

  • 7030,
  • 7060,
  • 14060,
  • 14285,
  • 145575 (FM),
  • 144285 (SSB),
  • 430150,
  • 430475 (FM),
  • 432200 (SSB).

В России любителей программы RDA (работающих «через дробь») обычно можно встретить около частоты 14180 кГц ±QRM.

Частоты для горных экспедиций по программе RMA точно не оговорены, поэтому радиолюбители-горники используют стандартные частоты, предназначенные для DX-экспедиций и QRP, описанные выше.

Частоты в Москве и Московской области

Частоты МВД

148-149 МГц - шаг 25 кГц (режим NFM).

148.2250 и 148.9500 - канал МУВД на железнодорожном транспорте.

171-173 МГц - шаг 25 (режим NFM)

171.7250 и 171.7500 - дежурная часть ГУВД Москвы.

171.7750 и 172.3250 - спецканал ГУВД Москвы.

172.3000 и 172.2750 - дежурная часть ГУВД Москвы.

205.100 - частота УГАИ ГУВД Москвы.

450-453 МГц - шаг 12.5 (NFM)

450.3000 450.3750 450.4750 450.5000 450.5705

450.6250 450.6500 450.6750

451.0500 451.1500

451.3000 451.4000

451.5250 и 451.5375 - скремблирование.

452.4250 452.5875 452.6200

460-463 МГц - шаг 12.5 (режим NFM)

460.8000 и 461.4500 - скремблирование.

461.0000 - канал спецсвязи МВД РФ.

Министерство обороны РФ

Диапазоны частот Минобороны РФ:

  • 254.000,
  • 254.685,
  • 380.000,
  • 393.100.

ФАПСИ

  • 148-149 (шаг 1) - полоса радиочастот предназначается для преимущественного использования средствами радиосвязи МВД РФ.
  • 149-149.9 (шаг 0.9) - полоса радиочастот предназначается для использования радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 157.875 - канал особого назначения ФАПСИ.
  • 162.7625-163.2 (шаг 0.4375) - полоса радиочастот предназначается для использования радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 168.5-171.15 (шаг 2.65) - полоса радиочастот предназначается для использования радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 169.455 и 169.462 - каналы особого назначения ФАПСИ.
  • 171.15-173 (шаг 1.85) - полоса радиочастот предназначается для преимущественного использования средствами радиосвязи МВД РФ.
  • 173-174 (шаг 1) - полоса радиочастот предназначается для использования радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 273-300 (шаг 27) - полоса радиочастот предназначается для использования радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 300-308 (шаг 8) - полоса радиочастот предназначается для фик-сированноц и подвижной служб. Отдельные участки в этой полосе используются радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 308-328.6 (шаг 20.6) - полоса радиочастот предназначается для преимущественного использования радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 328.6-335.4 (шаг 6.8) - полоса радиочастот предназначается для воздушной радионавигационной службы и преимущественно используется радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 335.4-336 (шаг 0.6) - полоса радиочастот предназначается для преимущественного использования радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 336-344 (шаг 8) - полоса радиочастот предназначается для фиксированной и подвижной служб. Отдельные участки в этой полосе используются радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.
  • 344-390 (шаг 46) - полоса радиочастот предназначается для преимущественного использования радиоэлектронными средствами правительственной связи, безопасности и обороны РФ.

Пожарная охрана

Все частоты штаба пожарной охраны Москвы:

  • 148.050,
  • 148.075,
  • 148.125,
  • 148.200.

Гражданский диапазон (Citizen Band)

  • 26.965-27.855 МГц (Европа),
  • 26.960-27.850 МГц (Россия) - шаг 10 (режим NFM, AM, USB, LSB).
  • 144-146 МГц - NFM USB CW DATA (для NFM шаг 25 кГц).
  • 145.025, 145.125,145.625, 145.725 - частоты ретрансляторов Московского радиоклуба.
  • 146.100, 146.700 - радиолюбительские ретрансляторы.
  • 430-440 МГц - NFM USB CW DATA (для NFM шаг 25).

Часть частот занята операторами транковой связи.

1260-1300 МГц (радиолюбительский 23-сантиметровый диапазон). 240-250 ГГц (радиолюбительский 12-сантиметровый диапазон). Это европейская сетка. Для российской сетки соответственно последняя цифра «0».

Например, 27.155MHz - С16Е, 27.150MHz - C16R.

Из полезных каналов (применительно к Москве) - ЗсЕ, 9сЕ, 19сЕ, 21dE.

Это аварийные каналы, там сидят диспетчеры, которые сообщают и принимают сообщения о пробках, авариях. Информацию о ДТП и других чрезвычайных ситуациях лучше передавать в каналах ЗсЕ («Петровка») или 9сЕ (Служба спасения).

Канал 9сЕ выделен для передачи исключительно ДТП и других чрезвычайных ситуаций. Если зарегистрироваться в службе «Крик» (Петровка, ЗсЕ) или в Службе спасения (19сЕ, 21dE, регистрация бесплатна, но обязательна), то диспетчера можно попросить позвонить по телефону и что-нибудь передать или использовать это все как пейджер (можно позвонить в диспетчерскую и попросить передать информацию для нужного вам человека (разумеется, если у него есть СВ-станция).

Аналогично работает служба «Полет-27» (9dE), только бесплатно. А в других случаях просто собственная связь, за город выезжать, связь между авто и т. д. Существуют каналы, занятые неким подобием клубов по интересам (в некоторой степени это «Полет-27», так как он организован Ассоциацией-27) и определенными районами Москвы.

Разрешенные каналы (по 40 каналов в сетках С и D) забиты изрядно, а дополнительные сетки стоят пустые (А, В, Е, F - если очень хочется, то в них можно работать, все делают вид, что этого нарушения не замечают)

УКВ

Частоты любительского УКВ диапазона:

  • 144-146 МГц - NFM USB CW DATA (для NFM шаг 25).
  • 145.025, 145.625 ретранслятор инверсный (г. Дмитров).
  • 145.125, 144.525 ретранслятор.
  • 145,600, 145,000 ретранслятор Серпухов.
  • 145.625, 145.025 ретранслятор.
  • 145.650, 145.050 ретранслятор подвес на МГУ.
  • 145,700, 145,100 ретранслятор Щелково.
  • 145.725, 145.125 ретранслятор Троицк.
  • 145,750, 145,150 ретранслятор Митино.
  • 430-440 МГц - то же самое, часть частот продана операторам транковой связи.

Примечание. Как правило, частоты приема и передачи радиолюбительских ретрансляторов (репитеров) имеют расхождение друг относительно друга на 600 кГц. Этот параметр запрограммирован производителем также в трансивере Kenwood TH-F7.

При этом если частота приема репитера 145.750, то частота его передачи будет -600 кГц, то есть 145.150 МГц.. В инверсных репитерах все с точностью до наоборот.

Трансивер Kenwood TH-F7 позволяет работать и с инверсными репитерами, для этого трансивер с клавиатуры перепрограммирует-ся так, чтобы на дисплее светился индикатор R (см. раздел 3.12).

Радиолюбительская спутниковая связь

Частоты радиолюбительской спутниковой связи:

  • 7000-7100 (шаг 100) - полоса радиочастот предназначается для любительской и любительской спутниковой служб.
  • 14000-142 50 (шаг 250) - полоса радиочастот предназначается для любительской и любительской спутниковой служб.
  • 21000-21450 (шаг 450) - полоса радиочастот предназначается для любительской и любительской спутниковой служб.
  • 28-29.7 МГц (шаг 1.7) - полоса радиочастот предназначается для любительской и любительской спутниковой служб.
  • 1240.000 - начало радиолюбительского 25-сантиметрового диапазона (до 1300.000).
  • 1300.000 - конец радиолюбительского 25-сантиметрового диапазона (с 1240.000).
  • 2310.000 - начало радиолюбительского 12-сантиметрового диапазона (до 2450.000).
  • 2450.000 - конец радиолюбительского 12-сантиметрового диапазона (с 2310.000).

КВ

Частоты любительского КВ диапазона:

  • 1.83-1.93 МГц (160 м).
  • 3.5-3.8 МГц (80 м).
  • 7-7.1 МГц (40 м).
  • 10.1-10.15 МГц (30 м CW only).
  • 14-14.35 МГц (20 м).
  • 18.068-18.168 МГц (16 м).
  • 21-21.45 МГц (15 м).
  • 24.89-24.99 МГц (12 м).
  • 28-29.7 МГц (10м).

При работе голосом на частотах ниже 10 МГц используется LSB, выше 10 МГц - USB. В AM станции работают в диапазонах 160 и 10 м. В основном применяется CW, SSB и цифровая связь (Packet Radio, SSTV, RTTY). FM-станции редко можно услышать только на 10 м.

Радиостанции LOW BAND

Радиостанции LOW BAND используются радиолюбителями, охранниками и различными «наружными» службами.

  • 30-36 МГц;
  • 39-50 МГц;
  • 36-42 МГц;
  • 42-50 МГц;
  • 136-162 МГц;
  • 136-174 МГц;
  • 146-174 МГц;
  • 300-345 МГц;
  • 403-433 МГц;
  • 403-470 МГц;
  • 438-470 МГц;
  • 465-495 МГц;
  • 490-520 МГц.

Некоторые частоты, выделенные для радиотелефонов

Например, радиотелефоны фирмы Panasonic работают на частотах 31-40 МГц.

Известны все частоты (полный список находится у автора книги), на которых работают все современные радиотелефоны. Для подстройки приемника трансивера под частоту базы или трубки телефонного аппарата необходимо знать модель применяемого радиотелефона.

Авиачастоты

Пейджинговые компании

В Москве пейджинговые компании работаю+ в диапазоне 146— 168 и 450-475 МГц в режиме NFM.

Системы закрытого пейджинга могут работать:

  1. на поднесущих частотах радиостанций и телевидения;
  2. в обычных пейджинговых компаниях, но сообщения кодируются при передаче;
  3. на частотах, не характерных для пейджинговой связи;
  4. с использованием методов передачи, отличных от Pocsag.

Частоты, не принадлежащие ни одной из известных компаний: 160.5500, 164.3500, 474.5000.

Сотовая сеть Билайн (стандарт AMPS, DAMPS)

  • 825-845 МГц -. мобильные объекты.
  • 870-890 МГц - ретрансляторы в режиме NFM, шаг 30 (для AMPS, для D-AMPS - несколько каналов на несущую).

Сотовая сеть МТС (Московская сотовая связь, NMT-450)

  • 453-457.5 МГц - мобильные объекты.
  • 463-467.5 МГц - ретрансляторы.

Сотовая сеть МТС (Мобильные Телесистемы, GSM-900)

Режим NFM, шаг 25. Частоты:

  • 890-915 МГц - мобильные объекты.
  • 935-965 МГц - ретрансляторы.

Цифровая связь, несколько каналов на несущую

Сотовая сеть GSM-1800 (Билайн).

Частоты: 1.8-1.9 ГГц цифровая связь, несколько каналов на несущую.

Сотовая сеть CDMA (нет данных).

Транковые сети

В Москве очень много, в основном от 140 и до 470 МГц (с исключениями) режим NFM, шаг 12.5 кГц.

Примеры частот (МГц):

  • 150 (150.450)
  • 373-375
  • 435-452
  • 433-434 (433.45, 433.475 и др.)
  • 477-478 (477.60, 477.61, 477.625, 477.65, 477.675, 477.70 и др.)
  • 484 (484.86)
  • 864-870 возможно, МТК-транк.

Сеть РусАлтай (АСВТ)

  • 337-343 МГц - мобильные объекты.
  • 368-388 МГц - ретрансляторы.

Режим NFM, шаг 25.

Сеть АМТ

Режим NFM, шаг 12,5 или 25. Дуплекс и полудуплекс. Частоты:

передача/прием

  • 300-308 МГц/336-344 МГц,
  • 336-340 МГц/346-350 МГц.

Спутниковая сеть INMARSAT

  • 1626.5-1646.5 восходящий луч от терминальных станций.
  • 1530-1545 нисходящий луч на терминальные станции.

Другие частоты, которые активны в эфире

  • 30-50 МГц (Low band);
  • 34.150 Мослифт;
  • 34.200 Мосводопровод;
  • 34.875 Салют;
  • 36.050 Областной водопровод;
  • 36.075 Контрольно-измерительные приборы;
  • 36.325 Канализация;
  • 36.925 Мослифт;
  • 38.750, 39.800, 42.870, 44.350, 44.600 Военные;
  • 40.100, 44.800 Областные пожарные;
  • 41.700 Автобипер;
  • 41.800 Областные врачи 41,900 ДЭЗ;
  • 41.950 Депо;
  • 42.150 Москанализация;
  • 42.250 Лесничество;
  • 43.125, 43.825 Резервные каналы на случай войны;
  • 43.200 Мосэнерго;
  • 43.800, 44.750 Такси;
  • 46.200, 43.975, 44.500 БТР;
  • 45.950 Мосга.

Частоты некоторых служебных радиостанций в Санкт-Петербурге, и не только

Перечень частот, постоянно запрещенных на территории России

495-505 кГц (шаг 10) - радиочастота 500 кГц является международной частотой бедствия и вызова для радиотелеграфии Морзе .

Запрещаются любые излучения, которые могут создавать вредные помехи связям в случае бедствия, аварии, срочности или для обеспечения безопасности на частотах:

  • 500 кГц,
  • 2174.5 кГц,
  • 2182 кГц,
  • 2187.5 кГц,
  • 4125 кГц,
  • 4177.5 кГц,
  • 4207.5 кГц,
  • 6215 кГц,
  • 6268 кГц,
  • 6312 кГц,
  • 8291 кГц,
  • 8376.5 кГц,
  • 8414.5 кГц,
  • 12290 кГц,
  • 12520 кГц,
  • 12577 кГц,
  • 16420 кГц,
  • 16695 кГц,
  • 16804.5 кГц,
  • 121.5 МГц,
  • 156.525 МГц,
  • 156.8 МГц
  • и в полосах частот 406-406.1 МГц, 1544-1545 МГц и 1645.5-1646.5 МГц.

Запрещаются также любые излучения на любой другой дискретной частоте, причиняющие вредные помехи связям в случае бедствия и для обеспечения безопасности.

2173.5-2190.5 (шаг 17) - радиочастота 2182 кГц (несущая) является и вызова для радиотелефонии.

Эта радиочастота может использоваться для целей поиска и спасания пилотируемых космических кораблей. Радиочастоты 2174.5 кГц, 4177.5 кГц, 6268 кГц, 8376.5 кГц, 12520 кГц и 16695 кГц являются международными частотами, предназначенными исключительно для обмена информацией в случае бедствия и для обеспечения безопасности на море с использованием аппаратуры узкополосной телеграфии (буквопечатание).

Радиочастоты 2187.5 кГц, 4207.5 кГц, 6312 кГц, 8114.5 кГц, 12577 кГц и 16804.5 кГц являются международными частотами, предназначенными исключительно для вызова при бедствии и в целях безопасности плавания с использованием аппаратуры цифрового избирательного вызова. Другие передачи в указанной полосе частот запрещаются.

117.975-137 (шаг 19.025) - полоса радиочастот предназначается для преимущественного использования воздушной подвижной службой . Отдельные участки в этой полосе радиочастот могут использоваться воздушной подвижной спутниковой (Р) службой.

Воздушная аварийная радиочастота 121.5 МГц используется станциями воздушной подвижной службы, работающими в полосе частот 117.975-137 МГц, для радиотелефонной связи в случае бедствия и для обеспечения безопасности.

121.5 МГц может также использоваться для этих целей станциями спасательных средств и аварийными радиомаяками-указателями места бедствия, для целей поиска и спасания пилотируемых космических кораблей. 121.45-121.55 МГц может использоваться подвижной спутниковой службой для приема на борту спутника сигналов от аварийных радиомаяков, передающих сигналы на радиочастоте 121.5 МГц.

123.1 МГц является вспомогательной частотой для воздушной аварийной частоты 121.5 МГ ц и предназначается для использования станциями воздушной подвижной службы, а также другими подвижными и сухопутными станциями, участвующими в совместных поисковых и спасательных операциях.

Подвижные станции морской подвижной службы могут поддерживать связь на этих частотах со станциями воздушной подвижной службы в случае бедствия и для обеспечения безопасности.

136-137 МГц может использоваться службой космической эксплуатации (Космос-Земля), службой космических исследований (Космос-Земля) и метеорологической спутниковой (Космос-Земля) службой на вторичной основе.

156.8 МГц является международной частотой бедствия , безопасности и вызова в морской подвижной службе для радиотелефонии. Эта радиочастота может использоваться для поиска и спасания пилотируемых космических кораблей.

406-406.1 (шаг 0.1) - полоса радиочастот предназначается исключительно для спутниковых аварийных радиомаяков - указателей места бедствия (Земля-Космос).

Список запрещенных для радиообмена частот

  • 500 кГц 40,000
  • 1,544-1,545 МГц (далее МГц) 40,100
  • 1,645-1,646 40,200
  • 2,040 40,500
  • 2125-2135 41,800
  • 2,145 42,000
  • 2,147-2,153 42,450
  • 2,173-2,190 42,750
  • 2,380 43,150
  • 2,498-2,502 43,750
  • 2,850-3,155 44,300
  • 3,400-3,500 44,400
  • 3.900-3,950 44,600
  • 4,125 44,700 4,175 44,800 4,177 44,900 4,188 45,100 4,207 45,125 4,210 45,200 4,430 45,300 4,650-4,750 45,350
  • 4.995-5,005 45,400 5,410 45,600 5,480-5,730 45,700 6,215 45,800 6,268 46,425 6,282 46,475 6,312 46,550 6,314 46,600 6,525-6,765 46,650 8,195-8,416 46,700 8,815-9,040 46,775
  • 9.995-10,100 46,825
  • 11,175-11,400 46,875 12,230-12,575 46,956 13,200-13,360 47,075 14,957-14,967 47,125
  • 14.990-15,900 47,375 16,360-16,800 47,575
  • 17.900-18,030 47,825 18,055-18,065 47,975 18,780-18,900 48,075 19,680 74,600-75,400
  • 19.990-20,010 121,500
  • 21,850-21,870 121,716-121,784 21,924-22,000 130,133-130,201 22,376 139,174-139,242
  • 24.990-25,010 156,525
  • 26,100 156,800 33,825 243,000 36,650 300,20.

Литература: Кашкаров А. П. Электронные устройства для уюта и комфорта.

Условия использования выделенных полос радиочастот по категориям радиолюбительских станций можно посмотреть

Основные виды работы радиолюбителей: телеграф (CW), телефон с однополосной модуляцией (SSB), телефон с чатотной модуляцией(дипазоны УКВ) и радиолюбительский телетайп (RTTY).

Радиолюбителям выделено 10 участков ДВ, СВ, КВ диапазонов:

2200-метровый (135,7-137,8 кГц)
160-метровый (1,81 - 2 МГц),
80-метровый (3,5 - 3,8 МГц),
40-метровый (7 - 7,2 МГц),
30-метровый (10,1 - 10,15 МГц),
20-метровый (14 - 14,35 МГц),
16-метровый (18,068 - 18,168 МГц),
15-метровый (21 - 21,45 МГц),
12-метровый (24,89 - 24,99 МГц),
10-метровый (28 - 29,7 МГц).

Распределение частот по УКВ диапазонам такое:

2 метра - 144-146 MHz
144000-144500 CW
144150-144500 SSB
144625-144675 Цифровые виды связи
144500-145800 FM
145800-146000 SSB
145800-146000 CW
70 см - 430-440 MHz
430000-432500 CW
432150-432500 SSB
433625-433725 Цифровые виды связи
432500-435000 FM
438000-440000 FM
438025-438175 Цифровые виды связи
435000-438000 SSB
435000-438000 CW
23 см - 1296-1300 MHz
1296000-1297000 CW
1296000-1297000 SSB
1297000-1298000 FM
1297000-1300000 FM
1296150-1297000 SSB
1296000-1297000 CW

Частоты выше 1.3 ГГц
2400-2450 МГц
5650-5670 МГц
10.0-10.5 ГГц
24.0-24.25 ГГц
47.0-47.2 ГГц
75.5-81.0 ГГц
119.98-120.02 ГГц
142-149 ГГц
241-250 ГГц

Радиолюбительский эфир никогда не бывает пуст. В любое время - суток можно услышать любительские радиостанции. Однако на разных любительских диапазонах прохождение радиоволн имеет свои особенности. Рассмотрим условия распространения радиоволн каждого любительского диапазона.

Прохождение на КВ во многом зависит от способности радиоволн отражаться от слоя ионосферы. Отражение от ионосферы радиоволн различной частоты в один и тот же момент времени различно. Волны низкочастотных диапазонов отражаются сильнее, высокочастотных слабее. Поэтому при слабой ионизации (например, зимней ночью) возможно дальнее распространение на низкочастотных диапазонах. В этом случае волны высокочастотных диапазонов проходят сквозь ионосферу и на Землю не возвращаются. При сильной же ионизации (например, днём""весной) имеются условия для дальнего - распространения на высокочастотных диапазонах.

Диапазон 1.8 Мгц Наиболее трудный диапазон для дальних связей. До недавнего времени, совершенно ошибочно в России отдан на откуп начинающим. Дальняя связь (свыше 1500-2000 км) возможна только при особом стечении обстоятельств и в течении ограниченного времени (полчаса-час) преимущественно на рассвете-закате. А связи до 1500 км возможны с наступлением темноты. При рассвете диапазон замирает. В некоторых странах участок ограничен всего несколькими кгц. В Японии, например, радиолюбителям разрешается работать в пределах 1815-1825 Кгц.

Диапазон 3,5 Мгц является ярко выраженным ночным диапазоном. В дневное время связь на нем возможна только с ближайшими корреспондентами. С наступлением темноты начинают появляться станции, удаленные на большие расстояния. Так, в Европейской части России после заката Солнца появляются станции Украины, Поволжья, Урала. Затем бывают слышны станции Восточной, а к 23-24 часам московского времени (по радиолюбительскому коду 23-24 MSK) - и Западной Европы. Чуть раньше возможно (особенно в зимние месяцы) появление сигналов DX из Азии (чаще всего Японии), реже - Африки, очень редко - Океании. К 3-4 MSK возможно появление сигналов станций Канады, США и Южной Америки, которые при хорошем прохождении бывают слышны и некоторое время после рассвета. Через час - два после восхода Солнца диапазон пустеет.

Диапазон 7 Мгц обычно «живет» круглые сутки. Днем на нем можно услышать станции близлежащих районов (летом - на расстоянии 500-600, зимой - 1000-1500 км). В вечерние и ночные часы появляются сигналы DX. Довольно много работают в этом диапазоне японские, американские и бразильские любители, сигналы радиостанций которых особенно хорошо проходят (в Европейской части России) зимними ночами в 1-5 MSK. Из европейских коротковолновиков особенно охотно используют диапазон 7 Мгц югославы, румыны, финны, шведы. Радиолюбителям США разрешена работа в участке 7.100-7.300 Мгц (В Европе эти частоты используют вещательные станции),а потому работать SSB с американцами можно только на разнесенных частотах.

Диапазон 14 Мгц - диапазон, в котором работает основная масса радиолюбителей. Прохождение на нем (за исключением зимних ночей) имеется практически круглые сутки. Особенно хорошее прохождение наблюдается в апреле-мае. В утренние часы (4-6 MSK) в Европейской части России хорошо проходят сигналы станций Америки, Океании. В дневное время в основной слышны европейские станции,- к вечеру появляются сигналы азиатских и африканских станций.

Диапазон 21 Мгц тоже, широко используется коротковолновиками. Прохождение на нём в основном наблюдается в дневные часы. Оно менее устойчиво, чем на 14 Мгц, я может резко меняться. Здесь особенно много радиолюбительских станций Японии, работающих на SSB: стоит дать общий вызов во время хорошего прохождения на Японию, как сразу на этой частоте появляется несколько зовущих радиостанций. Иногда они создают существенные помехи, мешая приему других дальних станций. Рано утром (или, наоборот, вечером - в зависимости от особенностей прохождения) на 21 Мгц можно слышать громкие сигналы американских станций. Днем и под вечер обычно хорошо слышны станции Африки - TR8, ZS, 9J2. Реже в это же время проходят VK и ZL.

Диапазон 28 Мгц лежит на "краю" коротких волн. Это - самый "капризный" коротковолновый диапазон: день - два отличного прохождения внезапно могут смениться неделей полного его отсутствия. Сигналы радиостанций здесь бывают слышны только днем, точнее - в светлое время суток, за исключением отдельных редких случаев аномального распространения радиоволн, поэтому возможны связи только между корреспондентами, находящимися в освещенной Солнцем зоне Земли. Чаще всего на 28 Мгц можно слышать сигналы африканских станций, Азии, реже - Океании. Иногда к вечеру в европейской части хорошо проходят сигналы коротковолновых радиостанций США. Из европейских станций наиболее активны F, G, I, DL/DJ/DK. Сигналы станции Восточной Европы проходят сравнительно редко. Диапазон 28 Мгц свободен от помех и наиболее интересен для наблюдений в связи с резкими изменениями прохождения. Уникальность его в том, что если имеется прохождение, то даже с самой минимальной мощностью вам могут удастся связи на 10-12 тысяч км. Если прохождения нет, то не поможет и наличие мощного передатчика.

Что касается остальных диапазонов 10,1 Мгц, 18,1 Мгц и 24,9 Мгц (их еще именуют WARC -диапазонами, благодаря всемирной радиолюбительской конференции, на которой они были закреплены за радиолюбителями), то прохождение на них нечто среднее между описанными выше диапазонами. Одно из отличий на диапазоне 10,1 Мгц - использование только телеграфа и телетайпа. А прохождение очень похоже на 7 Мгц, с той разницей, что днем возможны связи на расстояние до 2000-3000 км. А дальние станции проходят при наступлении темного времени суток.

Понравилось? Лайкни нас на Facebook