Схемы electronics workbench. Лабораторные работы. Установка частоты сигнала

ПРОГРАММА ELECTRONICS WORKBENCH

Возможности Electronics Workbench

Программа Electronics Workbench позволяет моделировать аналоговые, цифровые и цифро-аналоговые схемы большой степени сложности. Имеющиеся в программе библиотеки включают в себя большой набор моделей широко распространенных электронных элементов (компонентов). Простые элементы описываются набором параметров, значения которых можно изменять непосредственно с клавиатуры, активные элементы - моделью, представляющей собой совокупность параметров и описывающей конкретный элемент или его идеальное представление. Модель выбирается из списка библиотек элементов, параметры модели также могут быть изменены пользователем.

В библиотеки элементов программы входят модели пассивных элементов, транзисторов, управляемых источников, управляемых ключей, гибридных элементов, индикаторов, логических элементов, триггерных устройств, цифровых и аналоговых элементов, специальных комбинационных и последовательных схем. Возможно также создание своих моделей элементов и добавление их в библиотеки.

В программе используется большой набор приборов для проведения измерений: амперметр, вольтметр, осциллограф, мультиметр, боде-плоттер (графопостроитель частотных характеристик схем), функциональный генератор, генератор слов, логический анализатор и логический преобразователь.

Electronics Workbench позволяет проводить анализ схем на постоянном и переменном токах. При анализе на постоянном токе определяются параметры схемы в установившемся режиме. Анализ на переменном токе может проводиться как во временной, так и в частотной областях. Можно исследовать переходные процессы при воздействии на схемы входных сигналов различной формы.

Операции, выполняемые при анализе:

Выбор элементов и приборов из библиотек,

Перемещение элементов и схем в любое место рабочего поля,

Поворот элементов и групп элементов на углы, кратные 90 градусам,

Копирование, вставка или удаление элементов, групп элементов, фрагментов схем и целых схем,

Изменение цвета проводников,

Выделение цветом контуров схем для более удобного восприятия,

Одновременное подключение нескольких измерительных приборов и наблюдение их показаний на экране монитора,

Присваивание элементу условного обозначения,

Изменение параметров элементов в широком диапазоне.

Все операции производятся при помощи мыши и клавиатуры. Управление только с клавиатуры невозможно. Путем настройки приборов можно:

Изменять шкалы приборов в зависимости от диапазона измерений,

Задавать режим работы прибора,

Задавать вид входных воздействий на схему (постоянные и гармонические токи и напряжения, треугольные и прямоугольные импульсы).

Графические возможности программы позволяют:

Одновременно наблюдать несколько кривых на графике,

Отображать кривые на графиках различными цветами,

Измерять координаты точек на графике,

Импортировать данные в графический редактор, что позволяет произвести необходимые преобразования рисунка и вывод его на принтер.

Electronics Workbench позволяет вставить схему или её фрагмент в текстовый редактор и напечатать в нем пояснения или замечания по работе схемы.

Элементы Electronics Workbench

Для операций с элементами электрических и электронных схем на общем поле Electronics Workbench выделены две области: панель элементов и поле элементов (рис. 1. 1). Панель элементов состоит из пиктограмм полей, а поле элементов -из их условных изображений. Щелчком мыши на одной из тринадцати пиктограмм, расположенных на панели, можно открыть соответствующее поле.

На рис. 1.1 открыто поле источников (Sources). Расположение элементов в полях ориентировано на частоту их использования. Для описания элементов более логичным является разделение их по типам. Все элементы, используемые в программе Electronics Workbench, можно условно разбить на следующие группы: источники, базовые элементы, линейные элементы, ключи, нелинейные элементы, индикаторы, логические элементы, узлы комбинационного типа, узлы последовательного типа, гибридные компоненты. На рис. 1. 2 показаны все имеющиеся в Electronics Workbench поля элементов. Эта картинка получена искусственно, на самом деле при работе может быть открыто только одно поле элементов.

Источники

Все источники в Electronics Workbench идеальные. Внутреннее сопротивление идеального источника напряжения равно нулю, поэтому его выходное напряжение не зависит от нагрузки. При необходимости использовать два параллельно подключенных источника напряжения следует включить последовательно между ними небольшое сопротивление (например, в 1 Ом). Идеальный источник тока имеет бесконечно большое внутреннее сопротивление, поэтому его ток не зависит от сопротивления нагрузки.

ЭДС источника постоянного напряжения измеряется в Вольтах и задается производными величинами (от мкВ до кВ). Короткой жирной чертой в изображении батареи обозначается вывод, имеющий отрицательный потенциал по отношению к другому выводу.

Ток источника постоянного тока (direct current) измеряется в Амперах и задается производными величинами (от мкА до кА). Стрелка указывает направление тока (от "+" к "-").

Действующее значение (root-mean-square - RMS) напряжения источника измеряется в Вольтах и задается производными величинами (от мкВ до кВ). Имеется возможность установки частоты и начальной фазы. Действующее значение напряжения V RMS , вырабатываемое источником, связано с его амплитудным значением V PEAK следующим соотношением:

Действующее значение тока источника измеряется в Амперах и задается производными величинами (от мкА до кА). Имеется возможность установки частоты и начальной фазы. Действующее значение тока I RMS связано с его амплитудным значением I PEAK следующим соотношением:

Генератор вырабатывает последовательность прямоугольных импульсов. Можно регулировать амплитуду импульсов, коэффициент заполнения (скважность) и частоту следования импульсов. Отсчет амплитуды импульсов генератора производится от вывода, противоположного выводу "+".

Выходное напряжение источника напряжения, управляемого напряжением, зависит от входного напряжения, приложенного к управляющим зажимам. Отношение выходного напряжения к входному определяется коэффициентом пропорциональности Е, который задается в мВ/В, В/В и кВ/В:

где Vout - выходное напряжение источника, Vin- входное напряжение источника.

Величина тока источника тока, управляемого напряжением, зависит от входного напряжения, приложенного к управляющим зажимам. Отношение выходного тока к управляющему напряжению - коэффициент G, измеряется в единицах проводимости (1/Ом или сименс):

где I out - выходной ток источника, V in - напряжение, приложенное к управляющим зажимам источника.

Входной и выходной токи этого источника связаны коэффициентом пропорциональности F. Коэффициент F задается в мА/А, А/А и кА/А.

где I out - выходной ток источника, I in - входной ток источника.

Величина напряжения источника, управляемого током, зависит от величины входного тока (тока в управляющей ветви). Входной ток и выходное напряжение образуют параметр, называемый передаточным сопротивлением Н, который представляет собой отношение выходного напряжения к управляющему току. Передаточное сопротивление имеет размерность сопротивления и задается в Ом, кОм и мОм

где V ou t - выходное напряжение источника, I in - входной ток источника.

При подключении управляемых источников нужно соблюдать полярность и направление токов в подключаемых цепях. Стрелка указывает направление тока от "+" к "-".

Используя этот источник напряжения, можно устанавливать фиксированный потенциал узла 5 В или уровень логической единицы.

При помощи этого источника устанавливают уровень логической единицы в узле схемы.

Базовые элементы

Узел применяется для соединения проводников и создания контрольных точек. К каждому узлу может подсоединяться не более четырех проводников. После того, как схема собрана, можно вставить дополнительные узлы для подключения приборов.

Компонент "заземление" имеет нулевое напряжение и таким образом обеспечивает исходную точку для отсчета потенциалов. Не все схемы нуждаются в заземлении для моделирования, однако любая схема, содержащая: операционный усилитель, трансформатор, управляемый источник, осциллограф, должна быть обязательно заземлена, иначе приборы не будут производить измерения или их показания окажутся неправильными.

Линейные элементы

Сопротивление резистора измеряется в Омах и задается производными величинами (от Ом до МОм).

Положение движка переменного резистора устанавливается при помощи специального элемента - стрелочки-регулятора. В диалоговом окне можно установить сопротивление, начальное положение движка (в процентах) и шаг приращения (также в процентах). Имеется возможность изменять положение движка при помощи клавиш-ключей.

Используемые клавиши-ключи:

Буквы от А до Z,

Цифры от 0 до 9,

Клавиша Enter на клавиатуре,

Клавиша пробел .

Для изменения положения движка необходимо нажать клавишу-ключ. Для перемещения движка в большую сторону необходимо одновременно нажать и клавишу-ключ, в меньшую - только клавишу-ключ.

Пример: Движок установлен в положении 45%, шаг приращения - 5%, клавиша-ключ -пробел . Нажатием, клавиши смещаем движок в положение 40%. При каждом последующем нажатии на клавишу значение уменьшается на 5%. Если нажать + , то положение движка потенциометра увеличится на 5%.

Ёмкость конденсатора измеряется в Фарадах и задается производными величинами (от пФ до Ф).

Переменный конденсатор допускает возможность изменения величины емкости. Величину ёмкости устанавливают, используя её начальное значение и значение коэффициента пропорциональности следующим образом: С = (начальное значение/100) коэффициент пропорциональности. Значение емкости может устанавливаться с помощью клавиш- ключей так же, как и положение движка переменного резистора.

Индуктивность катушки (дросселя) измеряется в Генри и задается производными величинами (от мкГн до Гн).

Величину индуктивности этой катушки устанавливают, используя её начальное значение и значение коэффициента пропорциональности следующим образом: L = (начальное значение /100) коэффициент. Значение индуктивности может устанавливаться с помощью клавиш-ключей так же, как и положение движка переменного резистора.

Трансформатор используется для преобразования напряжения VI в напряжение V2. Коэффициент трансформации n равен отношению напряжения VI на первичной обмотке к напряжению V2 на вторичной обмотке. Параметр n может быть установлен в диалоговом окне свойств модели трансформатора. Трансформатор может быть выполнен с отводом средней точки.

Схема, содержащая трансформатор, должна быть заземлена.

Ключи

Ключи имеют два состояния: выключенное (разомкнутое) и включенное (замкнутое). В выключенном состоянии они представляют собой бесконечно большое сопротивление, во включенном состоянии их сопротивление равно нулю. Ключи могут управляться:

Клавишей,

Таймером,

Напряжением,

Так как замкнутые ключи в Electronics Workbench имеют сопротивление равное нулю, то при параллельном соединении с другим ключом или с источником напряжения рекомендуется последовательно ввести в цепь резистор с сопротивлением 1 Ом.

Электромагнитное реле может иметь нормально замкнутые или нормально разомкнутые контакты. Оно срабатывает, когда ток в управляющей обмотке превышает значение тока срабатывания I on . Во время срабатывания происходит переключение пары нормально замкнутых контактов S2, S3 реле на пару нормально разомкнутых контактов S2, S1. Реле остается в состоянии срабатывания до тех пор, пока ток в управляющей обмотке превышает удерживающий ток I hd . Значение тока I hd должно быть меньше, чем I on .

Ключи могут быть замкнуты или разомкнуты при помощи управляющих клавиш на клавиатуре. Имя управляющей клавиши можно ввести с клавиатуры в диалоговом окне, появляющемся после двойного щелчка мышью на изображении ключа.

Пример: Если необходимо, чтобы состояние ключа изменялось клавишей "пробел" , то следует ввести слово «Space» в диалоговое окно и нажать ОК.

Используемые клавиши-ключи: буквы от А до Z, цифры от 0 до 9, клавиша Enter на клавиатуре, клавиша пробел .

Реле времени представляет собой ключ, который размыкается в момент времени T off и замыкается в момент времени T on . T on и T off должны быть больше 0. Если T on < T off , то в начальный момент времени, когда t = 0, ключ находится в разомкнутом состоянии. Замыкание ключа происходит в момент времени t = T on , а размыкание - в момент времени t = T off . Если T on > T off , то в начальный момент времени, когда t = 0, ключ находится в замкнутом состоянии. Размыкание ключа происходит в момент времени t = T off , а замыкание - в момент времени t = T on . T on не может равняться T off .

Ключ, управляемый напряжением, имеет два управляющих параметра: включающее (V on) и выключающее (V off) напряжения. Он замыкается, когда управляющее напряжение больше или равно включающему напряжению V on , и размыкается, когда оно равно или меньше, чем выключающее напряжение V off .

Ключ, управляемый током, работает аналогично ключу, управляемому напряжением. Когда ток через управляющие выводы превышает ток включения I on , ключ замыкается; когда ток падает ниже тока выключения I off - ключ размыкается.

Нелинейные элементы

Лампа накаливания - элемент резистивного типа, преобразующий электроэнергию в световую энергию. Она характеризуется двумя параметрами: максимальной мощностью Р мах и максимальным напряжением V max . Максимальная мощность может иметь величину в диапазоне от мВт до кВт, максимальное напряжение - в диапазоне от мВ до кВ. При напряжении на лампе большем V max (в этот момент мощность, выделяющаяся в лампе, превышает Р m ах) она перегорает. При этом изменяется изображение лампы (обрывается нить) и проводимость ее становится равной нулю.

Предохранитель разрывает цепь, если ток в ней превышает максимальный ток I max . Значение I max может иметь величину в диапазоне от мА до кА. В схемах, где используются источники переменного тока, I max является максимальным мгновенным, а не действующим значением тока.

Ток через диод может протекать только в одном направлении - от анода А к катоду К. Состояние диода (проводящее или непроводящее) определяется полярностью приложенного к диоду напряжения.

Для стабилитрона (диода Зенера) рабочим является отрицательное напряжение. Обычно этот элемент используют для стабилизации напряжения.

Светодиод излучает видимый свет, когда проходящий через него ток превышает пороговую величину.

Мостовой выпрямитель предназначен для выпрямления переменного напряжения. При подаче на выпрямитель синусоидального напряжения среднее значение выпрямленного напряжения V dc можно приблизительно вычислить по формуле:

где V p – амплитудное значение синусоидального напряжения.

Диод Шоттки находится в отключенном состоянии до тех пор, пока напряжение на нем не превысит фиксированного уровня порогового напряжения.

У тиристора помимо анодного и катодного выводов имеется дополнительный вывод управляющего электрода. Он позволяет управлять моментом перехода прибора в проводящее состояние. Вентиль отпирается, когда ток управляющего электрода превысит пороговое значение, а к анодному выводу приложено положительное напряжение. Тиристор остается в открытом состоянии, пока к анодному выводу не будет приложено отрицательное напряжение.

Симистор способен проводить ток в двух направлениях. Он запирается при изменении полярности протекающего через него тока и отпирается при подаче следующего управляющего импульса.

Динистор - управляемый анодным напряжением двунаправленный переключатель. Динистор не проводит ток в до тех пор, пока напряжение на нем не. Когда напряжение, приложенное к динистору, превысит напряжение переключения, последний переходит в проводящее состояние и его сопротивление становится равным нулю.

Операционный усилитель (ОУ) - усилитель, предназначенный для работы с обратной связью. Он обычно имеет очень высокий коэффициент усиления по напряжению, высокое входное и низкое выходное сопротивление. Вход "+" является прямым, а вход "-" - инвертирующим. Модель операционного усилителя позволяет задавать параметры: коэффициент усиления, напряжение смещения, входные токи, входное и выходное сопротивления. Входные и выходные сигналы ОУ должны быть заданы относительно земли.

ОУ с пятью выводами имеет два дополнительных вывода (положительный и отрицательный) для подключения питания. Для моделирования этого усилителя используется модель Буля-Коха-Педерсона. В ней учитываются эффекты второго порядка, ограничение выходного напряжения и тока.

Умножитель перемножает два входных напряжения V x и V y . Выходное напряжение V out рассчитывается по формуле:

.

где k - константа умножения, которая может устанавливаться пользователем.

Биполярные транзисторы.

Биполярные транзисторы являются усилительными устройствами, управляемыми током. Они бывают двух типов: p-n-p и n-p-n. Буквы означают тип проводимости полупроводникового материала, из которого изготовлен транзистор. В транзисторах обоих типов стрелкой отмечается эмиттер, направление стрелки указывает направление протекания тока.

Транзистор n-p-n имеет две области n-типа (коллектор к и эмиттер э) и одну область р-типа (база б).

Полевые транзисторы (FET)

Полевые транзисторы управляются напряжением на затворе, то есть ток, протекающий через транзистор, зависит от напряжения на затворе. Полевой транзистор включает в себя протяженную область полупроводника n-типа или р-типа, называемую каналом. Канал снабжен двумя электродами, которые называются истоком и стоком. Кроме канала n-или р-типа, полевой транзистор включает в себя область с противоположным каналу типом проводимости. Электрод, соединенный с этой областью, называют затвором. Для полевых транзисторов в Electronics Workbench выделено специальное поле компонентов FET. В программе имеются модели полевых транзисторов трех типов: транзисторов с управляющим р-n переходом (JFET) и двух типов транзисторов на основе металлооксидной пленки (МОП-транзисторы или MOSFET): МОП-транзисторы с встроенным каналом (Depletion MOSFETs) и МОП-транзисторы с индуцированным каналом (Enhancement MOSFETs).

Полевые транзисторы с управляющим р-n переходом (JFET)

Полевой транзистор с управляющим р-n переходом (JFET) – это униполярный транзистор, управляемый напряжением, в котором для управления током используется наведенное электрическое поле, зависящее от напряжения затвора. Для n-канального полевого транзистора с управляющим р-n переходом ток увеличивается с увеличением напряжения. В поле компонентов имеется два типа таких транзисторов: n-канальный и p-канальный.

Полевые транзисторы на основе металлооксидной пленки

Управление током, протекающим через полевой транзистор на основе металлооксидной пленки (МОП-транзистор или MOSFET), также осуществляется с помощью электрического поля, прикладываемого к затвору. Обычно подложка контактирует с наиболее отрицательно смещенным выводом транзистора, подключенным к истоку. В трехвыводных транзисторах подложка внутренне соединена с истоком. N-канальный транзистор имеет следующее обозначение: стрелка направлена внутрь значка; р-канальный транзистор имеет исходящую из значка стрелку. N-канальный и р-канальный МОП-транзисторы имеют различную полярность управляющих напряжений. В Electronics Workbench имеется 8 типов МОП-транзисторов: 4 типа МОП-транзисторов со встроенным каналом, 4 типа МОП-транзисторов с индуцированным каналом.

МОП-транзистор со встроенным каналом (Depletion MOSFETs)

Подобно полевым транзисторам с управляющим р-n переходом (JFET), МОП-транзистор со встроенным каналом состоит из протяженной области полупроводника, называемой каналом. Для р-канального транзистора эта область является полупроводником р-типа, для n-канального транзистора - n-типа. Металлический затвор МОП-транзистора изолирован от канала тонким слоем двуокиси кремния так, что ток затвора во время работы пренебрежимо мал. Ток стока n-канального транзистора определяется напряжением затвор-исток. С увеличением этого напряжения ток увеличивается, с уменьшением напряжения – уменьшается. При значении напряжения затвор-исток Vgs (off) канал полностью обеднен, и ток от истока к стоку прекращается. Напряжение Vgs (off) называется напряжением отсечки. С другой стороны, чем более положительно напряжение затвор-исток, тем больше размер канала, что приводит к увеличению тока. Р-канальный транзистор работает аналогично, но при противоположных полярностях напряжения.

МОП-транзисторы с индуцированным каналом

Эти МОП-транзисторы не имеют физического канала между истоком и стоком, как МОП-транзисторы со встроенным каналом. Вместо этого область проводимости может расширяться на весь слой двуокиси кремния. МОП-транзистор с индуцированным каналом работает только при положительном напряжении исток-затвор. Положительное напряжение исток-затвор, превышающее минимальное пороговое значение (Vto), создает инверсионный слой в области проводимости, смежной со слоем двуокиси кремния. Проводимость этого индуцированного канала увеличивается при увеличении положительного напряжения затвор-исток. МОП-транзисторы с индуцированным каналом используются преимущественно в цифровых схемах и схемах с высокой степенью интеграции (БИС).

Цифровые элементы

Цифровые элементы программы представлены следующими группами: индикаторы, логические элементы, узлы комбинационного типа, узлы последовательностного типа, гибридные элементы.

Индикаторы

Каждый из семи выводов индикатора управляет соответствующим сегментом, от а до g. В таблице функционирования приведены комбинации логических уровней, которые нужно установить на входе индикатора, чтобы на его дисплее получить изображения шестнадцатиричных цифр от 0 до F.

Обозначение сегментов семисегментного индикатора и таблица функционирования приведены ниже:

Таблица функционирования

а b с d е f g символ на дисплее
-
А
b
С
d
Е
F

Дешифрирующий семисегментный индикатор служит для отображения на своем дисплее шестнадцатеричных чисел от 0 до F, задаваемых состоянием на входе индикатора. Соответствие состояний на выводах изображаемому символу приведено в таблице функционирования.

Таблица функционирования

а b с d символ на дисплее
. 1 А
b
С
d
Е
F

Пробник определяет логический уровень (0 или 1) в конкретной точке схемы. Если исследуемая точка имеет уровень логической 1, индикатор загорается красным цветом. Уровень логического нуля свечением не отмечается. С помощью команды Value в меню Circuit можно изменить цвет свечения пробника.

Зуммер применяется для звуковой сигнализации о превышении подводимого к нему напряжения. Встроенный в компьютер динамик издает звук заданной частоты, если напряжение превышает пороговое значение. С помощью команды Value в меню Circuit можно задать пороговое напряжение и частоту звукового сигнала.

Логические элементы

Electronics Workbench содержит полный набор логических элементов и позволяет задавать их основные характеристики, в том числе тип элемента: ТТЛ или КМОП. Число входов логических элементов схем можно установить в пределах от 2 до 8, но выход элемента может быть только один.

Элемент логическое НЕ или инвертор изменяет состояние входного сигнала на противоположное. Уровень логической 1 появляется на его выходе, когда на входе 0.

Таблица истинности

Выражения Булевой алгебры:

Элемент И-НЕ реализует функцию логического умножения с последующей инверсией результата. Он представляется моделью из последовательно включенных элементов И и НЕ. Таблица истинности элемента получается из таблицы истинности элемента И путем инверсии результата.
Таблица истинности

Установку типа буфера можно произвести с помощью команды Model в меню Circuit (CTRL+ M). При использовании ТТЛ элемента в качестве буфера необходимо выбрать модель буфера LS-BUF или LS-OC-BUF (Open Collector - открытый коллектор). Если в качестве буфера применяется КМОП элемент, следует выбрать модель HC-BUF, либо HC-OD-BUF (Open Drain -открытый сток). Если тип буфера не выбран, то буфер ведет себя как обычный цифровой элемент с малой нагрузочной способностью.

Буфер с тремя состояниями имеет дополнительный разрешающий вход (enable input). Если на разрешающем входе высокий потенциал, то элемент функционирует по таблице истинности обыкновенного буфера, если низкий, то независимо от сигнала на входе выход перейдет в состояние с высоким импедансом. В этом состоянии буфер не пропускает сигналы, поступающие на вход.

Установка режима работы производится так же, как и для обычного буфера.

Программа ELECTRONICS WORKBENCH

Программа ELECTRONICS WORKBENCH позволяет моделировать и анализировать аналоговые, цифровые и цифро-аналоговые электрические схемы большой степени сложности. Имеющиеся в программе библиотеки включают в себя большой набор широко распространенных электронных компонентов, параметры которых можно изменять в широком диапазоне значений. Простые компоненты описываются набором параметров, значения которых можно изменить непосредственно с клавиатуры, активные элементы – моделью, представляющей собой совокупность параметров и описывающей конкретный элемент или его идеальное представление. Модель выбирается из списка библиотек компонентов, и ее параметры также могут быть изменены пользователем.

Широкий набор приборов позволяет производить измерения различных величин, задавать входные воздействия, строить графики. Все приборы изображаются в виде, максимально приближенном к реальному, поэтому работать с ними просто и удобно.

Возможности ELECTRONICS WORKBENCH

Основные достоинства программы:

1. Экономия времени:

электронная лаборатория всегда под рукой.

2. Достоверность измерений:

все элементы описываются строго заданными параметрами.

3. Удобство проведения измерений.

4. Графические возможности позволяют:

одновременно наблюдать несколько кривых на графике,

отображать кривые на графиках различными цветами,

изображать координаты точек на графике.

5. Анализ схем:

может производиться как во временной, так и в частотной областях; программа также позволяет проводить анализ цифро-аналоговых и цифровых схем.

Компоненты ELECTRONICS WORKBENCH

Базовые компоненты

Соединяющий узел

Узел применяется для соединения проводников и создания контрольных точек. К каждому узлу может подсоединяться не более четырех проводников.

После того, как схема собрана, можно вставить дополнительные узлы для подключения приборов.

Заземление

Компонент «заземление» имеет нулевое напряжение и, таким образом, обеспечивает исходную точку для отчета потенциалов.

Не все схемы нуждаются в заземлении для моделирования, однако любая схема, содержащая: операционный усилитель, трансформатор, управляемый источник, осциллограф, должна быть обязательно заземлена, иначе приборы не будут производить измерения или их показания окажутся неправильными.

Источник постоянного напряжения

ЭДС источника постоянного напряжения или батареи измеряется в вольтах и задается производными величинами (от мкВ до кВ).

Источник постоянного тока

Ток источника постоянного тока измеряется в амперах и задается производными величинами (от мкА до кА). Стрелка указывает направление тока (от «+» к «-»).

Источник переменного напряжения

Действующее значение напряжения источника измеряется в вольтах и задается производными величинами (от мкВ до кВ). Имеется возможность установки частоты и начальной фазы. Напряжение источника отсчитывается от вывода со знаком «~».

Источник переменного тока

Действующее значение тока источника измеряется в амперах и задается производными величинами (от мкА до кА). Имеется возможность установки частоты и начальной фазы. Напряжение источника отсчитывается от вывода со знаком «~».

Резистор

Сопротивление резистора измеряется в омах и задается производными величинами (от Ом до МОм).

Переменный резистор

Положение движка переменного резистора устанавливается при помощи специального элемента – стрелочки-регулятора. Для изменения положения движка необходимо нажать клавишу-ключ. Для увеличения значения положения движка необходимо одновременно нажать [ Shift] и клавишу-ключ, для уменьшения - клавишу-ключ.

Конденсатор

Емкость конденсатора измеряется в фарадах и задается производными величинами (от пФ до Ф).

Переменный конденсатор

Переменный конденсатор допускает возможность изменения величины емкости:

С = (начальное значение / 100) · коэффициент пропорциональности.

Катушка индуктивности

Индуктивность катушки измеряется в генри и задается производными величинами (от мкГн до Гн).

Катушка с переменной индуктивностью

Индуктивность катушки устанавливают, используя начальное ее значение и коэффициента пропорциональности, следующим образом:

L = (начальное значение / 100) · коэффициент пропорциональности.

Трансформатор

Трансформатор используется для преобразования напряжения U1 в напряжение U2. Коэффициент трансформации n равен отношению напряжения U1 на первичной обмотке к напряжению U2 на вторичной обмотке.

Реле

Электромагнитное реле может иметь нормально замкнутые или нормально разомкнутые контакты. Оно срабатывает, когда ток в управляющей обмотке превышает значение тока срабатывания Ion. Во время срабатывания происходит переключение пары нормально замкнутых контактов S2, S3 реле на пару нормально замкнутых контактов S2, S1 реле. Реле остается в состоянии срабатывания до тех пор, пока ток в управляющей обмотке превышает удерживающий ток Ihd. Значение тока Ihd должно быть меньше, чем Ion .

Ключ, управляемый напряжением

Ключ, управляемый напряжением, имеет два управляющих параметра: включающее и выключающее напряжения. Он замыкается, когда управляющее напряжение больше или равно включающему напряжению, и размыкается, когда оно равно или меньше, чем выключающее напряжение.

Ключ, управляемый током

Ключ, управляемый током, работает аналогично ключу, управляемому напряжением. Когда ток через управляющие выводы превышает ток включения, ключ замыкается; когда ток падает ниже тока выключения, ключ размыкается.

Мостовой выпрямитель

Мостовой выпрямитель предназначен для выпрямления переменного напряжения. При подаче на выпрямитель синусоидального напряжения среднее значение выпрямленного напряжения Udc можно приблизительно вычислить по формуле:

Udc = 0,636 (Up - 1,4), где Up - амплитуда входного синусоидального напряжения.

Диод

Ток через диод может протекать только в одном направлении - от анода A к - катоду K. Состояние диода (проводящее и непроводящее) определяется полярностью приложенного к диоду напряжения.

Светоизлучающий диод

Светоизлучающий диод излучает видимый свет, когда проходящий через него ток превышает пороговую величину.

Тиристор

У тиристора помимо анодного и катодного выводов имеется дополнительный вывод управляющего электрода. Он позволяет управлять моментом перехода прибора в проводящее состояние. Вентиль отпирается, когда ток управляющего электрода превысит пороговое значение, а к анодному выводу не будет приложено положительное смещение. Тиристор остается в открытом состоянии, пока к анодному выводу не будет приложено отрицательное напряжение.

Симистор

Симистор способен проводить ток в двух направлениях. Он запирается при изменении полярности протекающего через него тока и отпирается при подаче следующего управляющего импульса.

Динистор

Динистор – управляемый анодным напряжением двунаправленный переключатель. Динистор не проводит ток в обоих направлениях до тех пор, пока напряжение на нем не превысит напряжения переключения, тогда динистор переходит в проводящее состояние, его сопротивление становится равным нулю.

Операционный усилитель

Операционный усилитель предназначен для усиления сигналов. Он имеет обычно очень высокий коэффициент усиления по напряжению, высокое входное и низкое выходное сопротивление. Вход «+» является неинвертирующим, а вход «-» - инвертирующим. Модель операционного усилителя позволяет задавать параметры: коэффициент усиления, напряжения смещения, входные токи, входное и выходное сопротивления.

Входные и выходные сигналы ОУ должны быть заданы относительно земли.

Операционный усилитель с пятью выводами

ОУ с пятью выводами имеет два дополнительных вывода (положительный и отрицательный) для подключения питания.

Биполярные транзисторы

Биполярные транзисторы являются усилительными устройствами, управляемыми током. Они бывают двух типов: P-N-P и N-P-N.

Буквы означают тип проводимости полупроводникового материала, из которого изготовлен транзистор. В транзисторах обоих типов стрелкой отмечается эмиттер, направле­ние стрелки указывает направление протекания тока.

N-P-N транзистор

N-P-N транзистор имеет две n-области (коллектор С и эмиттер E) и одну p-область (базу В).

P-N-P транзистор

P-N-P транзистор имеет две p-области (коллектор С и эмиттер E) и одну n-область (базу В).

Полевые транзисторы (FET)

Полевые транзисторы управляются напряжением на затворе, то есть ток, протекающий через транзистор, зависит от напряжения на затворе. Полевой транзистор включает в себя протяженную область полупроводника n- или р- типа, называемую каналом. Канал оканчивается двумя электродами, которые называются истоком и стоком. Кроме канала n- или p- типа, полевой транзистор включает в себя область с противоположным каналу типом проводимости. Электрод, соединенный с этой областью, называют затвором.

Логические элементы

Логическое НЕ

Элемент логическое НЕ или инвертор изменяет состояние входного сигнала на противопо­ложное. Уровень логической единицы появляется на его выходе, когда на входе не единица, и наоборот.

Таблица истинности

Выражение булевой алгебры: Y=А × В.

Логическое ИЛИ

Элемент ИЛИ реализует функцию логического сложения. Уровень логической единицы на его выходе появляется в случае, когда на один или на другой вход подается уровень логической единицы.

Таблица истинности

Выражения булевой алгебры:

Элемент И - НЕ

Элемент И-НЕ реализует функцию логического умножения с последующей инверсией результата. Он представляется моделью из последовательно включенных элементов И и НЕ.

Таблица истинности элемента получается из таблицы истинности элемента И путем ин­версии результата.

Таблица истинности

Выражение булевой алгебры:

Исключающее ИЛИ - НЕ

Данный элемент реализует функцию «исключающее ИЛИ» с последующей инверсией результата. Он представляется моделью из двух последовательно соединенных элементов исключающее ИЛИ и НЕ.

Таблица истинности

Вход А Вход В Выход Y

Выражение булевой алгебры:

Узлы комбинационного типа

Полусумматор

Полусумматор производит сложение двух одноразрядных двоичных чисел. Он имеет два входа слагаемых: А, В и два выхода: суммы и переноса. Суммирование производится элементом Исключающее ИЛИ, а перенос - элементом И.

Таблица функционирования

Входы Выходы Примечание
А В сумма перенос
0+0=0
0+1=1
1+0=1
1+1=0 (перенос)

Выражения булевой алгебры: сумма = A Å B, перенос = А×В.

Полный двоичный сумматор

Полный двоичный сумматор производит сложение трех одноразрядных двоичных чисел. Результатом является двухразрядное двоичное число, младший разряд которого назван суммой, старший разряд – переносом.

Устройство имеет три входа и два выхода. Входы: слагаемых А, В и переноса. Выходы: суммы и переноса. Полный двоичный сумматор можно реализовать на двух полусумматорах и одном элементе ИЛИ.

Таблица функционирования

Входы Выходы
А В перенос сумма перенос

Дешифратор из 3 в 8

Дешифратор - логическое устройство, имеющее n входов и 2 n выходов. Каждой комбинации входного кода соответствует активный уровень на одном из 2 n выходов. Данный дешифратор имеет три входа адреса (А, B, С), два разрешающих входа (G1, G2) и 8 выходов (YО...Y7). Номер выхода, имеющего активное состояние, равен числу N, определяемому состоянием адресных входов:

N = 22 C+ 21 B+20 A.

Активным уровнем является уровень логического нуля. Дешифратор работает, если на входе G1 высокий потенциал, а на G2 - низкий. В других случаях все выходы пассивны, то есть имеют уровень логической единицы.

Таблица функционирования

Входы разрешения Адресные входы Выходы
G1 G2 A B C Y0 Y1 Y2 Y3 Y4 Y5 Y6 Y7
X X x X
X X x

Приоритетный шифратор из 8 в З

Шифратор выполняет операцию, обратную дешифратору. Строго говоря, только один из входов шифратора должен иметь активный уровень.

Данный шифратор при наличии на нескольких входах активного состояния активным считает вход со старшим номером. Кроме того, выход дешифратора инверсный, то есть зна­чения разрядов двоичного числа на выходе инвертированы. Если хотя бы один из входов шифратора в активном состоянии, выход GS также будет в активном состоянии, а выход Е0 - в пассивном и наоборот. При пассивном состоянии разрешающего входа Е1 выходы GS также будут пассивными. Активным уровнем так же, как и у дешифратора, является уровень логического нуля.

Таблица функционирования

E1 D0 D1 D2 D3 D4 D5 D6 D7 A2 A1 A0 GS E0
X X X X X X X X
X X X X X X X
X X X X X X
X X X X X
X X X X
X X X
X X
X

Мультиплексор из 8 в 1

Мультиплексор (селектор данных) осуществляет операцию передачи сигнала с выбранного входа на выход. Номер входа равен адресу - двоичному числу, определяемому состоя­нием адресных входов.

Данный мультиплексор имеет 12 входов; восемь из которых входы данных (D0 - D7), три входа адреса (А, В, С) и один разрешающий вход (ЕN). Мультиплексор работает при подаче на вход разрешения логического 0.

Выход W является дополнением выхода Y (W = Y).

Таблица функционирования

Входы Выходы
C B A EN Y W
X X X
D0 D0’
D1 D1’
D2 D2’
D3 D3’
D4 D4’
D5 D5’
D6 D6’
D7 D7’

Демультиплексор

Демультиплексор выполняет операцию, обратную мультиплексору. Он передает дан­ные со входа на тот выход, номер которого равен адресу. Данное устройство имеет 4 входа и 8 выходов. Входы адреса: А, В, С. Вход данных - G. Если на входе G логическая единица, то на всех выходах также логическая единица.

Таблица функционирования

Входы Выходы
G C B A O0 O1 O2 O3 O4 O5 O6 O7
X X X X

Узлы последовательного типа

Триггер - простейший последовательный элемент с двумя состояниями, содержащий элементарную запоминающую ячейку и схему управления, которая изменяет состояние элементарной ячейки. Состояние триггера зависит как от комбинации на входах, так и от предшествующего состояния. Триггерные устройства лежат в основе компьютерной опера­тивной памяти и используются во множестве последовательных схем. Триггер можно со­здать из простых логических элементов.

RS-триггер

RS-триггер имеет только два установочных входа: S (set - установка) - установка выхода Q в 1 и R (reset - сброс) - сброс выхода Q в 0. Для этого триггера является недопустимой одновременная подача команд установки и сброса (R = S = 1), поэтому состояние выхода в этом случае остается неопределенным и не описывается.

Таблица функционирования

Счетчик

Счетчик - элемент, осуществляющий подсчет импульсов, подаваемых на его вход. Двоичное число, представляемое состоянием его выходов, по фронту импульса на счетном входе увеличивается на единицу. Описываемое устройство представляет со­бой четырехразрядный счетчик с двумя входами синхронизации и четырьмя выхода­ми. Чтобы использовать счетчик по максимальной длине счета, генератор тактовых импульсов подключают к входу синхронизации CLKA и соединяют выход QA со вхо­дом синхронизации CLKB. Суммирование производится по отрицательному фронту импульса на счетном входе. Для сброса счетчика в 0 на входы R01 и R02 подают уро­вень логической единицы.

Таблица функционирования

Входы Выходы
N Счет D C B A

Сброс счетчика:

Входы Выходы
R01 R02 QD QC QB QA
Счет
Счет

Гибридные компоненты

ЦАП

Цифроаналоговый преобразователь (ЦАП) осуществляет преобразование цифрового сигнала в аналоговый. Описываемый ЦАП имеет 8 цифровых входов и 2 входа (I+I и I-I) для подачи опорного тока Iоп. ЦАП формирует на выходе ток Iвых, который пропорционален входному числу Nвх.

Выходной ток определяется по формуле:

I вых = (N вх /256)Iоп,

где Iоп – опорный ток, определяемый последовательно подключенными ко входу Uоп + или Uописточником напряжения Uоп и сопротивлением R:

I оп== (Uоп/ R)×255/256.

Второй выход является дополнением первого. Его ток определяется из выражения: I вых ’= Iоп - I вых.

Аналого-цифровой преобразователь (АЦП) производит преобразование аналогового напряжения в число. Представленный АЦП переводит аналоговые напряжения Uвх на входе в 8-разрядное двоичное число Nвых по формуле:

где – целая часть, Ufs = Uоп+- Uоп-- разница напряжений на опорных входах.

555 таймер

Таймер – элемент, имеющий цифровой вход и выход, характеризуется временем задержки Td. Изменение состояния на его выходе происходит через время, определяемое временем задержки Td.

555 таймер – интегральная схема, наиболее часто употребляемая как мультивибратор, одновибратор или управляемый напряжением генератор. Состояние выхода таймера изменяется через время, определяемое внешней времязадающей RC-цепью. Принципиально 555 таймер состоит из двух компараторов, делителя напряжения, триггера и разряжающего транзистора.

Одновибратор

Одновибратор вырабатывает импульс фиксированной длительности в ответ на управляющий перепад на его входе. Длина выходного импульса определяется внешней времязадающей RC- цепью.

Установка формы сигнала

Выберите требуемую форму выходного сигнала и нажмите на кнопку с соответствующим изображением. Форму треугольного и прямоугольного сигналов можно изменить, уменьшая или увеличивая значение в поле DUTY CYCLE (скважность). Этот параметр определяется для сигналов треугольной и прямоугольной формы. Для треугольной формы напряжения он задает длительность (в процентах от периода сигнала) между интервалом нарастания напряжения и интервалом спада. Установив, например, значение 20, мы получим длительность интервала нарастания 20 % от периода, а длительность интервала спада - 80 %. Для прямоугольной формы напряжения этот параметр задает соотношение, между длительностями положительной и отрицательной части периода.

Установка частоты сигнала

Частота генератора может регулироваться от 1 Гц до 999 МГц. Значение частоты устанавливается в строке FREQUENCY с помощью клавиатуры и кнопок со стрелками.

Моделирование схем

ELECTRONICS WORKBENCH позволяет моделировать аналоговые, цифровые и цифроаналоговые схемы различной степени сложности.

Исследуемая схема собирается на рабочем поле при одновременном использовании мыши и клавиатуры. При построении и редактировании схем выполняются следующие операции:

Выбор компонента из библиотеки компонентов;

Выделение объекта;

Перемещение объекта;

Копирование объекта;

Удаление объекта;

Соединение компонентов схемы проводниками;

Установка значений компонентов;

Подключение приборов.

После построения схемы и подключения приборов анализ ее работы начинается после нажатия выключателя.

Выключатель

Подключение приборов

В ELECTRONICS WORKBENCH имеется семь приборов, формирующих различные воздействия и анализирующих реакцию схемы. Эти приборы представлены в виде пиктограмм, расположенных на панели инструментов.

Для подключения прибора к схеме нужно мышью переместить прибор с панели инструментов на рабочее поле и подключить выводы прибора к исследуемым точкам. Некоторые приборы нужно заземлять, иначе их показания будут неверными.

Лабораторная работа № 1

Эксперимент 1.

Эксперимент 2.

Эксперимент 3.

Эксперимент 4.

Эксперимент 5.

Эксперимент 7.

Вопросы к защите

1. Перечислите все возможные типы источников ЭДС, имеющихся в программе Electronic Workbench. Каковы свойства и их условные обозначения?

2. Перечислите все возможные типы источников тока, имеющихся в программе Electronic Workbench. Каковы их свойства и условные обозначения?

3. Чему равно внутреннее сопротивление идеального источника тока и как его определить?

4. Чем отличаются неидеальные источники энергии от идеальных?

5. Как осуществить эквивалентное преобразование неидеального источника тока в неидеальный источник напряжения и обратное преобразование?

Список литературы:

1. Карлащук В. И. Электронная лаборатория на IBM PC. Программа Electronic Workbench и ее применение. М.: Солон-Р, 2000. С. 84-103, 134-156.

2. Касаткин А. С., Немцов М. В. Электротехника: учебник. М.: Высш. шк., 2000. С. 37-101.

3. Панфилов Д. И., Иванов В. С., Чепурин И. Н. Электротехника и электроника в экспериментах и упражнениях. Практикум на Electronic Workbench. М.: Изд-во «Додэка», 1999. Т 1. С. 69-86.


Лабораторная работа № 2

Эксперимент 1

1. Собрать схему (рис. 2) на экране.

4. Запишите показания амперметров в табл. 1.

Эксперимент 2

1. Собрать схему (рис. 3) на экране.

Эксперимент 3

1. Собрать схему (рис. 4) на экране.

2. Определить ток I1 методом свёртки.

3. Определить ток I2, используя выражение для делителя тока.

4. Запишите показания амперметров в табл.1.

5. Провести экспериментальную проверку результатов расчета.

Эксперимент 4

1. Собрать схему (рис. 5) на экране.

3. Запишите показания вольтметра в табл. 1.

4. Провести экспериментальную проверку результатов расчета.

Вопросы к защите

1. Укажите последовательность стадий расчета по методу эквивалентных преобразований.

2. Укажите признаки параллельного и последовательного соединений. Запишите расчетные соотношения для делителей тока и напряжения.

3. Выведите формулы обобщенного закона Ома для участка цепи, используя второй закон Кирхгофа.

4. Укажите правила составления уравнений по второму закону Кирхгофа.

Список литературы:

1. Карлащук В. И. Электронная лаборатория на IBM PC. Программа Electronic Workbench и ее применение. М.: Солон-Р, 2000. С. 134-144.

2. Касаткин А. С., Немцов М. В. Электротехника: учебник. М.: Высш. шк., 2000. С. 4-35.

3. Панфилов Д. И., Иванов В. С., Чепурин И. Н. Электротехника и электроника в экспериментах и упражнениях. Практикум на Electronic Workbench. М.: Изд-во «Додэка», 1999. Т1. С. 97-104.

Лабораторная работа № 3

Постоянного тока

Цель работы

Экспериментальная проверка I и II законов Кирхгофа. Замена активного двухполюсника эквивалентным генератором.

Домашнее задание

1. Определить необходимое и достаточное число уравнений для анализа электрической цепи методом уравнений Кирхгофа для одного из вариантов цепей, приведенных на рис. 1, 2 (по указанию преподавателя).

2. На основании п. 1 записать систему уравнений согласно законам Кирхгофа.

3. Записать формулы для определения параметров эквивалентного генератора Еэкв=Uabххи Rэ=Rэabэлектрической цепи, приведенной на рис. 1, 2 (по указанию преподавателя).

Схемы эксперимента

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

План урока

дисциплина: Электронная техника

тема: Электронная лаборатория Electronics Workbench 4.1 for Windows

Цели урока:

Обучающая: Дать обучающимся понятие о виртуальной электронной лаборатории Electronics Workbench 4.1 for Windows, научить основам работы с элементами при сборке электрических схем.

Развивающая: развить умения и навыки при составлении и виртуальной сборке электрических схем различного уровня сложности.

Воспитательная: применяя различный подход к степени усвоения материала обучающимися через процесс воспитания добиться максимальной эффективной результативности в работе.

Тип урока: Объяснение нового материала.

Вид урока: практический.

Межпредметные связи: микрорадиоэлектроника, общая электротехника, электропитание со средствами связи, основы промышленной электроники.

Место проведения: 220 кабинет

Время проведения: 90 минут

Технические средства обучения: мультимедийный проектор, персональный компьютер, демонстрационный экран.

Ход урока

Организационный момент Приветствие. Проверка количества присутствующих на уроке студентов, уровня готовности к уроку (принадлежности)

Основная часть. Уважаемые студенты! Сегодня мы с вами познакомимся с самой простой версией электронной виртуальной лаборатории - компьютерным программным комплексом Electronics Workbench for Windows. Идея создания программных продуктов данной серии принадлежит корпорации Interactive Image Technologies. Самая первая версия появилась в 1989г. Ранние версии программы состояли из двух независимых частей. С помощью одной половины программы можно было моделировать аналоговые устройства, с помощью другой - цифровые. Такое “раздвоенное” состояние создавало определенные неудобства, особенно при моделировании смешанных аналого-цифровых устройств.

В 1996г. в версии 4.1 эти части были объединены и через полгода выпущена пятая версия программы. Она дополнена средствами анализа примерно в объеме программы Micro-Cap V, переработана и несколько расширена библиотека компонентов. Средства анализа цепей выполнены в типичном для всей программы ключей - минимум усилий со стороны пользователя.

Дальнейшим развитием EWB является программа EWB Layout, предназначенная для разработки печатных плат. Программа EWB обладает преемственностью снизу вверх, т.е. все схемы созданные в версиях 3.0 и 4.1, могут быть промоделированы в версии 5.0. Следует отметить, что EWB позволяет также моделировать устройства, для которых задание на моделирование подготовлено в текстовом формате SPICE, обеспечивая совместимость с программами Micro-Cap и Pspice.

Программа EWB 4.1 рассчитана для работы в среде Windows 3.xx или 95/98 и занимает около 5 Мбайт дисковой памяти, EWB 5.0 - в среде Windows 95/98 и NT 3.51, требуемый объем дисковой памяти - около 16 Мбайт. Для размещения временных файлов требуется дополнительно 10-20 Мбайт свободного пространства.

Electronics workbench - это одна из самых мощных программ для моделирования процессов и расчета электронных устройств на аналоговых и цифровых элементах. Даже в стандартной комплектаций в наличии имеется большой выбор виртуальных генераторов, тестеров, осциллографов. Совместима с программами PCB-дизайна и CA. Особенностью программы является наличие контрольно-измерительных приборов, по внешнему виду и характеристикам приближенных к их промышленным аналогам. Программа легко осваивается и достаточно удобна в работе. После составления схемы и ее упрощения путем оформления подсхем моделирование начинается щелчком обычного выключателя.

Преимущества:

При разработке современного радиоэлектронного оборудования невозможно обойтись без компьютерных методов разработки, ввиду сложности и объемности выполняемых работ. Процесс разработки схем радиоэлектронных устройств требует высокой точности и глубокого анализа. Еlectronics Workbench может применяться как на предприятиях, занимающихся разработкой электрических цепей так и в высших учебных заведениях, занимающихся изучением и разработкой радиоэлектронных устройств. Еlectronics Workbench применяется в большинстве высших учебных заведений мира. Еlectronics Workbench может применяться как замена дорогостоящего оборудования. Еlectronics Workbench может производить большое количество анализов радиоэлектронных устройств, занимающих достаточно много времени при стандартных методах разработки. Еlectronics Workbench включает в себя большое количество моделей радиоэлектронных устройств наиболее известных производителей, таких как Motorolla. Еlectronics Workbench прост в обращении и не требует глубоких знаний в компьютерной технике. Интерфейс Еlectronics Workbench можно освоить буквально за несколько часов работы. Еlectronics Workbench может работать с большим числом компьютерной переферии, а также имитировать ее работу. Еlectronics Workbench может на данный момент не имеет себе аналогов по простоте интерфейса и числу выполняемых функций.

Использование мыши и клавиатуры

Программа использует стандартный интерфейс управления Windows. Поэтому преобладает ориентация на использование мыши: мышью устанавливаются компоненты и связи, осуществляется управление инструментами подобно реальной лаборатории. Клавиатура используется ограниченно в случаях редактирования свойств компонентов, а также для быстрого вызова наиболее часто используемых операций. Итак, мышь позволяет:

перетаскивать компоненты по экрану;

выбирать компоненты, кнопки и другие элементы при наведении мыши и одиночном щелчке левой клавишей;

выбирать одновременно более одного элемента;

выделять свойства компонента двойным щелчком левой кнопки. Перетаскивание заключается в наведении мыши на объект, нажатии левой клавиши мыши и переведении курсора мыши в новое положение, отпускании левой клавиши в конечном положении. Выбрать несколько элементов можно, если нажать левую клавишу в верхнем левом углу воображаемой прямоугольной области, на которой располагаются компоненты, необходимые для выделения, а далее, не отпуская клавиши, переместить курсор мыши в правый нижний угол этой области, при этом программа прорисует пунктиром прямоугольную область выделения. В конечном положении левая клавиша отпускается, и компоненты, попавшие в эту область, изменят цвет на красный.

Electronics Workbench реализован как реальная лаборатория, в которой имеются перед глазами все компоненты и инструменты, готовые к использованию. Ключевые составляющие интерфейса: рабочее пространство, корзина компонентов, меню, инструменты и кнопка питания, активизирующая программный анализ цепи.

Для построения и исследования цепи необходимо сделать следующее.

Перетащить компоненты из корзины компонентов на рабочее пространство.

Соединить их выводы перемещением мыши с нажатой левой кнопкой от вывода одного компонента к другому.

Установить модели компонентов и значения их величин.

Подсоединить тестирующие инструменты.

Активировать цепь. Установка модели компонента производится либо одновременным нажатием Ctrl+M, либо выбором компонента мышью и последующим вызовом пункта Model из меню Circuit. Установка значения величины компонента производится либо одновременным нажатием клавиш Ctrl+U, либо вызовом пункта Value из меню Circuit. Если в меню Preferences из Circuit выбрать команду Show Value, то электрические величины компонентов будут отображаться рядом с ними. Компоненты можно обозначить условно, если выбрать компонент и нажать одновременно Ctrl+L, либо в меню Circuit выбрать команду Label. Чтобы условные обозначения отображались на рабочем пространстве, в меню Preferences из Circuit выбрать команду Show Label. Тестирующие инструменты подсоединяются перетаскиванием с панели инструментов их пиктограмм на рабочее пространство и соединением их выводов к соответствующим участкам цепей. Активирование цепи происходит при нажатии «кнопки питания» в верхнем правом углу. Это вызывает запуск подпрограммы анализа цепи. Далее можно просмотреть значения на измерительных инструментах по двойному щелчку на их пиктограммах в рабочем пространстве.

Для выполнения курсового проектирования Вам, студентам, достаточно воспользоваться только следующими корзинами компонентов: Active, Passive, Indic, FET.

Корзина Passive: земля, источник постоянного напряжения, источник постоянного тока, источник переменного напряжения, источник переменного тока, резистор, конденсатор, катушка индуктивности, трансформатор, вставка плавкая, источник напряжения 5В, pull-up резистор, реостат, переменный конденсатор, переменная катушка индуктивности, полярный конденсатор, источник прямоугольного напряжения, резистивная матрица.

Корзина Active: диод, стабилитрон, светодиод, n-p-n-транзистор, p-n-p-транзистор, ДУ, ОУ с напряжением питания, управляемый теристор, неуправляемый теристор, неуправляемый семистор, управляемый семистор, диодный мостик, умножитель напряжений.

Корзина FET: n-канальный ПТУП, p-канальный ПТУП, МОП со встроенным n-каналом и подложкой, соединённой с истоком, МОП со встроенным р-каналом и подложкой, соединённой с истоком, МОП со встроенным n-каналом и отдельным выводом для подложки, МОП со встроенным р-каналом и отдельным выводом для подложки, МОП с индуктируемым n-каналом и подложкой, соединённой с истоком, МОП с индуктируемым р-каналом и подложкой, соединённой с истоком, МОП с индуктированным n-каналом и подложкой с отдельным выводом, МОП с индуктированным p-каналом и подложкой с отдельным выводом.

Корзина Indic: вольтметр, амперметр, лампа накаливания, световой индикатор напряжения, семисегментный светодиодный индикатор с управлением сегментами по выводам, семисегментный светодиодный индикатор со встроенным шестнадцатеричным дешифратором (на вход подаётся шестнадцатеричное число), устройство сохранения результатов анализа в файл в виде ASCII - кода, пьезоэлектрический динамик.

Кроме указанных корзин имеется ещё 6 корзин: Control (Управляемые), Hybrid (Гибридные), Gates (Вентили), Combinational (Составные), Sequential (Последовательные) и Integrated Circuits (Интегральные схемы). Эти корзины представлены на рис. 4. Корзина Control содержит следующие компоненты (по порядку сверху вниз): переключатель (переключение задаётся кнопкой клавиатуры); переключатель по временному управлению; переключатель, управляемый напряжением; переключатель, управляемый током; реле; источник напряжения, управляемый напряжением; источник тока, управляемый током; источник тока, управляемый напряжением; источник напряжения, управляемый током. Корзина Hybrid содержит компоненты: АЦП; ЦАП в ток; ЦАП в напряжение; одновибратор; 555-таймер (Устройство с двумя состояниями на выходе, длительности и выбор которых управляются входами). Корзина Gates содержит: вентиль И; вентиль ИЛИ; вентиль НЕ; вентиль И-НЕ; вентиль ИЛИ-НЕ; исключающее ИЛИ-НЕ; исключающее ИЛИ; трехстабильный буфер с Z-состоянием; буфер-повторитель. Корзина Combinational содержит: полусумматор; полный сумматор; мультиплексор 1х8; демультиплексор 1х8; преобразователь двоично-десятичного представления в шестнадцатеричное; дешифратор 3 на 8; шифратор 8 на 3. Корзина Sequential содержит: RS-триггер; JK-триггер с прямым динамическим входом и прямыми асинхронными входами управления; JK-триггер с прямым динамическим входом и инверсными асинхронными входами управления; D-триггер с прямым динамическим входом; D-триггер с прямым динамическим входом и инверсным асинхронным управлением; 4-битный двоичный счётчик; 4-битный универсальный сдвигающий регистр. Корзина Integrated Circuits содержит: серия ИС 74ХХ, 741ХХ, 742ХХ, 743ХХ, 744ХХ, 4ХХХ. В каждой из серий можно выбрать конкретную ИС из списка.

Рассмотрим основные элементы.

Меню File, Edit и Help - стандартны и интереса не представляют. Тем не менее, для людей, которые с Windows «на Вы» дадим краткую характеристику этих меню. Сами они представлены на рис.6. Меню File представлено следующими пунктами:

· New (CTRL+N) - создание нового документа,

· Open... (CTRL+O) - открытие существующего документа,

· Save (CTRL+S) - сохранение существующего документа,

· Save As... - сохранение текущего документа с новым именем,

· Revert to Saved - возвращение к документу, каким он был на момент до последнего сохранения,

· Print... (CTRL+P) - распечатать цепь текущего документа,

· Print Setup... - вызов окна редактирования установок текущего принтера (выбранного по умолчанию),

· Exit (ALT+F4) - выход из программы,

· Install... - используется для установки дополнительных компонент программы (не понадобится),

· Import from SPICE - перевод из формата.cir PSpice в формат Workbench, workbench электронный виртуальный лаборатория

· Export to SPICE - перевод текущего документа Workbench в формат.cir PSpice,

· Export to PCB - перевод документа Workbench в формат файлов связей для редактирования печатных плат и трассировки в программах OrCAD 386, Tango, Eagle, Protel или Layo1.

Меню Edit содержит:

· Cut (CTRL+X) - удалить выделенные элементы в буфер обмена (специальная область памяти Windows для временного хранения данных в универсальном представлении с целью обмена между приложениями),

· Copy (CTRL+C) - скопировать выделенные компоненты в буфер обмена,

· Paste (CTRL+V) - вставить данные из буфера обмена,

· Delete (DEL) - удалить выделенные компоненты,

· Select All (CTRL+A) - выбрать все компоненты текущего документа,

· Show Clipboard - показать содержимое буфера обмена,

Copybits (CTRL+I) - выбрать и скопировать часть или весь экран в буфер обмена. Меню Help содержит:

· Help (F1) - показывает информацию по выделенному объекту, если объект не выделен, показывает содержание помощи,

· Help Index... - получение справки по интересующей тематике по её имени,

· About Electronics Workbench - показывает версию программы, её владельца и серийный номер.

Меню Window (рис.8) содержит:

· Arrange (CTRL+W) - вы можете располагать окна рабочей области, корзины, описания, как захотите, но если хотите вернуть всё в исходное - воспользуйтесь этим пунктом,

· Circuit - выводит на передний план окно рабочей области,

· Description (CTRL+D) - вызывает появление окна описания, в котором на английском языке (во всяком случае, воспринимаются только латинские литеры) можно сделать комментарии,

· Все остальные пункты выводят на передний план соответствующие окна.

Меню Circuit содержит команды: Activate (Ctrl+G) - запускает моделирование цепи, Stop (Ctrl+T) - прекращает процесс моделирования, Pause (F9) - приостанавливает процесс моделирования, Label (Ctrl+L) - присваивает компоненту имя, Value (Ctrl+U) - присваивает компоненту новые параметры, Model (Ctrl+M) - вызывает окно выбора и редактирования модели компонента, Zoom (Ctrl+Z) - изменяет масштаб отображения, Rotate (Ctrl+R) - поворачивает компонент на 90 градусов, Subscript (Ctrl+B) - открывает окно редактирования собственных компонентов, Wire color - определяет цвет провода (еще можно это сделать, дважды щелкнув по проводу), цвет провода также определяет цвет сигнала на экране осциллографа, Preferences (Ctrl+E) - определяет параметры рабочей поверхности (показать сетку, имена компонентов, моделей, величины компонентов), Analysis Options (Ctrl+Y) - определяет тип анализа и свойства отображения осциллографа.

Пример составления цепи. Для примера покажем составление цепи схемы с общим эмиттером на биполярном транзисторе с использованием цепи стабилизации методом трёх резисторов. Для начала выбираем корзину компонентов Passive. Находим в ней изображение резистора и проделываем следующие манипуляции:

· наводим указатель мыши на изображение резистора,

· нажимаем левую клавишу мыши,

· не отпуская клавиши, двигаем мышь вправо по коврику, т.о. перетаскиваем компонент на рабочее пространство,

· останавливаем курсор с компонентом на нужном месте и отпускаем левую клавишу мыши.

После этого резистор остаётся на месте, а мышь освобождается для следующих манипуляций.

Кстати, для перемещения любых компонентов (резисторов, транзисторов и др.) в пределах рабочего пространства проделываются аналогичные манипуляции.

Далее проделываем следующие манипуляции для придания резисторам вертикального расположения: выделяем любой резистор, для этого наводим курсор мыши на его изображение, щёлкаем левой клавишей мыши, когда резистор окрашивается в красный цвет, это значит, что он выделен (запомнить!). Теперь переводим клавиатуру в латинский режим и нажимаем одновременно клавиши CTRL и R. Резистор поворачивается на 900 . Эти действия необходимо выполнить над всеми оставшимися резисторами. Теперь наведите курсор мыши на верхний вывод верхнего левого резистора так, чтобы в месте касания курсором возник круг чёрного цвета. Как только добьётесь этого, нажмите левую кнопку мыши и, не отпуская её, переместите указатель мыши на верхний вывод верхнего правого резистора так, чтобы там тоже появился чёрный круг. Как только он появился, отпустите левую кнопку мыши. Только что вы были свидетелем соединения двух резисторов проводником. Надо заметить, что соединить можно не только компонент с компонентом, но и компонент с проводником, для чего надо вести провод от компонента к проводнику до появления на месте соединения чёрной окружности, отпуская, вы получите узел. Используя полученные навыки, закончите соединение компонентов в цепь с общим эмиттером.

Теперь выделите левый верхний резистор и дважды щелкните по его изображению, используя левую клавишу мыши.

Введите в левое окошко число 650, в правом окошке отображается множитель, и щёлкните мышкой по клавише Accept. Вы увидите, что сопротивление резистора изменилось на введённую величину. Теперь выберите в главном меню пункт Circuit, а в нём Preferences. В появившемся окне выберите галочкой пункт Show labels. Теперь вы можете увидеть обозначения элементов, но прежде их надо ввести.

И, наконец, нажмите клавишу Power в правом верхнем углу окна программы (не на системном блоке!). Таким образом, мы запустили подпрограмму моделирования в данном случае статического процесса и получили картину, как на рис.19. Теперь результат можно вывести на печать, выбрав в меню File пункт Print. Также можно сохранить схему в файле, выбрав в меню File пункт Save. В дальнейшем файл можно открыть для дальнейшей работы (Меню File пункт Open).

Заключение

Итак, уважаемые студенты мы с вами на данном занятий ознакомились с электронной лабораторией, пронаблюдали процесс создания электрической цепи лёгкой и средней сложности при помощи компьютерной программы. Мы с вами на дальнейших занятиях продолжим изучение различных приёмов работы с другими более поздними версиями Electronics Workbench, в которых интерфейс намного совершеннее и «дружелюбней» чем более старые версии, больше технических возможностей, добавлены дополнительные панели инструментов.

Выставление оценок за урок. (комментирование результатов).

Домашнее задание: Повторить условные обозначения электрических устройств и контрольно- измерительных приборов. Повторить 1 и 2-ой Законы Кирхгофа (из курса общей электротехники).

Размещено на Allbest.ru

Подобные документы

    Electronics Workbench – электронная лаборатория на ПК, предназначена для моделирования и анализа электрических схем. Исследование элементов электрических цепей. Идеальный источник ЭДС. Исследование последовательного и параллельного соединений резисторов.

    контрольная работа , добавлен 23.07.2012

    Характеристика процесса моделирования электронных схем. Описание интерфейса и основ установки программы Electronics Workbench, библиотеки компонентов. Примеры моделирования схем работы синтезатора, умножителя частоты, генератора синусоидальных колебаний.

    книга , добавлен 31.07.2015

    Вивчення структури вікон і системи меню Electronics Workbench. Розгляд технології підготовки схем та складання їх компонентів на робочому полі програми. Визначення областей застосування та класифікаційних параметрів елементів радіоелектронної апаратури.

    методичка , добавлен 18.06.2010

    Загальна характеристика програми Провідник. Виконання операцій над об"єктами: копіювання, переміщення, вилучення, відновлення. Розгляд можливостей програми Electronics Workbench. Створення таблиці в MS Excel за зразком та виконання необхідних розрахунків.

    контрольная работа , добавлен 20.11.2015

    Позначення та розрахунок діодів, транзисторів, аналогових, цифрових та змішаних інтегральних схем, індикаторів, перетворюючих та керуючих елементів, приладів, базових, логічних і цифрових компонент бібліотеки елементів програми Electronics Workbench.

    методичка , добавлен 18.06.2010

    История создания. Windows 9x/NT. Операционная система Microsoft Windows. Преимущества и недостатки Windows. Некоторые клавиатурные комбинации Windows 9x и NT. Windows XP Professional. Наиболее совершенная защита.

    реферат , добавлен 18.07.2004

    Операционная система от компании Microsoft. Понятие Windows 8, ее особенности. Использование мыши и приложений в интерфейсе Метро. Самый проблемный жест при работе с Windows 8. Направленность операционной системы на устройства с сенсорным экраном.

    реферат , добавлен 16.05.2013

    История ОС семейства Windows. Основные принципы администрирования ОС. Создание домашней группы. Присоединение к домашней группе или ее создание. Особенности ОС Windows 7. Анализ уязвимостей Microsoft Windows 7. Особенности версий ОС Windows 7.

    курсовая работа , добавлен 13.12.2010

    Прикладные программы и утилиты. Простейшие функции операционной системы. История разработки корпорацией Microsoft Corporation графической операционной оболочки Windows. Версия семейства сетевых ОС Windows NT (Millennium Edition, 2000, XP, Vista, Seven)

    презентация , добавлен 12.10.2013

    Характеристика операционной системы. История развития Windows. Сравнительная характеристика версий Windows. Элементы и инструменты Windows XP. Прикладные программы в Windows XP. Работа настольных и портативных компьютеров под управлением Windows.

Пакет Electronics Workbench предназначен для моделирования и анализа электротехнических и схемотехнических схем. Данный пакет с большой степенью точности моделирует построение реальных схем в «железе».

Таблица 3

Меню пиктограмм

Пиктограмма

Название

Описание

Избранное

Источники сигналов

Пассивные компоненты и коммутационные устройства

Транзисторы

Аналоговые микросхемы

Микросхемы смешанного типа

Цифровые микросхемы

Логические цифровые микросхемы

Цифровые микросхемы

Индикаторные устройства

Аналоговые вычислительные устройства

Компоненты смешанного типа

Контрольно-измерительные приборы

Основные приемы работы

В Electronics Workbench сборка схемы осуществляется в рабочей области. Электронные компоненты для сборки схемы берутся из меню, содержащего набор ком­понентов. Содержимое набора компонентов можно изменить нажатием соот­вет­ству­ющих кнопок, расположенных непосредственно над окнами. Чтобы переместить требуемый компонент в рабочую область, нужно поместить на него курсор и нажать ле­­вую клавишу мыши. Затем, удерживая клавишу в нажатом состоянии, «пе­ре­та­щить» элемент, двигая мышь, в требуемое положение в рабочей области и отпустить клавишу.

Чтобы осуществить какие-либо операции над элементом его необходимо выделить. Выделение элемента осуществляется щелчком мыши на элементе, при этом он окрашивается в красный цвет.

Если необходимо повернуть элемент, нужно сначала его выделить, а затем использовать комбинацию клавиш , нажатие которых приводит к повороту элемента на 90°.

Для удаления элемента его также необходимо сначала выделить, а затем нажать клавишу и в ответ на запрос о подтверждении удаления нажать кнопку подтверждения или отмены удаления.

Все электронные компоненты характеризуются своими параметрами, оп­ре­де­ля­ю­щими их поведение в схеме. Чтобы задать эти параметры нужно дважды щелкнуть мышью на нужном элементе, в результате чего появится диалоговое окно, в котором необходимо выбрать или записать требуемые параметры и закрыть его нажатием кнопки Ok .

Чтобы соединить между собой выводы элементов подведите курсор к нужному выводу, при этом, если к этому выводу действительно можно подсоединить проводник, на нем появится маленький черный кружок. При появлении кружка нажмите левую клавишу мыши и, не отпуская ее, протащите курсор к другому выводу. Когда на другом выводе тоже появится черный кружок, отпустите клавишу, и эти выводы автоматически будут соединены проводником. Если вывод элемента нужно подсоединить к уже имеющемуся проводнику, то подведите курсор мыши при нажатой клавише к этому проводнику, при этом также в том месте, где можно сделать подсоединение появится маленькая окружность. В этот момент отпустите клавишу, и в схеме автоматически образуется проводящее соединение между проводниками, обозначенное черным кружком.

Основные компоненты

1. Источник постоянного напряжения

Находится в наборе Источники сигналов

.

Этот элемент представляет собой модель идеального источника напряжения, поддерживающего на своих выводах постоянное напряжение заданной величины. Величина напряжения может задаваться разработчиком двойным щелчком мыши на элементе и записью в диалоговом окне требуемого значения.

Лампочка накаливания

2. Лампочка накаливания .

Находится в наборе Индикаторные устройства .

Этот элемент моделирует обычную лампу накаливания и может находиться в трех состояниях: выключенном, включенном и перегоревшем. Поведение элемента характеризуется двумя параметрами: мощностью и максимально допустимым напряжением. Ввести нужные параметры можно двойным щелчком мыши на элементе. После этого появляется диалоговое окно. Введите требуемые параметры и закройте диалоговое окно щелчком на кнопке Ok .

При работе схемы элемент будет находиться в выключенном состоянии, если приложенное к нему напряжение не превышает половины максимального напряжения. Если приложенное напряжение находится в интервале от половины максимального напряжения до уровня максимального напряжения, элемент находится во включенном состоянии. При превышении приложенным напряжением заданного максимального напряжения элемент переходит в перегоревшее состояние.

Заземление

3. Заземление .

Находится в наборе Источники сигналов .

В схеме, собранной с помощью Electronics Workbench, как и практически для любой реальной схемы, требуется указать точку нулевого потенциала, относительно которой определяются напряжения во всех других точках схемы. Именно для этой цели служит элемент заземление. Его единственный вывод подключается к той точке схемы, потенциал которой принимается равным нулю. Допускается и даже целесообразно, особенно для сложных схем, использовать несколько элементов заземления. При этом считается, что все точки, к которым подсоединены заземления, имеют один общий потенциал, равный нулю.

Точка - соединитель

4. Точка - соединитель .

Находится в наборе .

Основным свойством точки-соединителя является то, что вы можете под­сое­ди­нять к ней проводники. Подсоединять проводники к точке можно слева, справа, сверху и снизу, то есть существует всего четыре места подсоединения проводников к од­ной точке и, следовательно, в одной точке могут соединяться не более четырех про­вод­ников. Для реализации такого подсоединения нужно подвести проводник при на­жа­той клавише мыши к соответствующей стороне точки, при этом около точки появляется маленький черный кружок. Отпуская в этот момент левую клавишу мыши, получаем требуемое подсоединение.

Переключатель

5. Переключатель .

Находится в наборе Пассивные компоненты и коммутационные устройства .

Этот переключатель допускает два возможных положения, в которых один общий вход соединяется с одним из двух возможных выходов. По умолчанию пере­клю­чение осуществляется клавишей пробел . Чтобы назначить какому-либо пере­ключателю другую клавишу, нужно дважды щелкнуть мышью на этом пере­клю­ча­теле, ввести требуемый символ в появившемся диалоговом окне и нажатием кнопки Ok подтвердить сделанный выбор. После этого переключение данного переключателя будет осуществляться с помощью выбранной клавиши.

Динамик

6. Динамик .

Находится в наборе Индикаторные устройства.

Этот элемент издает гудок заданной частоты, если приложенное к его выводам напряжение превышает установленный уровень напряжения. Значения порогового напряжения и частоты издаваемого сигнала можно задать в диалоговом окне, появляющемся при двойном щелчке мыши на элементе.

Вольтметр

7. Вольтметр .

Находится в наборе Индикаторные устройства .

Этот элемент показывает напряжение, приложенное к его выводам. Одна из сторон этого элемента выделена утолщенной линией. Если напряжение, приложенное к выводам таково, что потенциал на выводе, находящемся с не выделенной стороны, больше потенциала на выводе, находящемся с выделенной стороны, то знак напряжения, показываемого вольтметром, будет положительным. В противном случае знак индицируемого напряжения будет отрицательным.

Амперметр

8. Амперметр .

Находится в наборе Индикаторные устройства .

Этот элемент показывает величину тока, протекающего через его выводы. Одна из сторон этого элемента выделена утолщенной линией. Если направление тока, протекающего через выводы элемента, совпадает с направлением от не выделенной стороны к выделенной стороне, то знак величины индицируемого тока будет положительным. В противном случае знак будет отрицательным.

Резистор

9. Резистор .

Находится в наборе. Пассивные компоненты и коммутационные устройства .

Этот элемент представляет собой один из наиболее широко используемых компонентов электронных схем. Величина сопротивления резистора задается разработчиком в диалоговом окне, появляющемся при двойном щелчке мыши на элементе.

Простейшие электрические цепи

Простейшая электрическая цепь состоит из источника и приемника электрической энергии. В качестве простейшего источника электрической энергии может служить источник постоянного напряжения, например, батарейка. Приемником электрической энергии обычно служит устройство, преобразующее энергию электрического тока в другой вид энергии, например, в световую энергию в электрической лампочке, или в энергию акустических волн в динамике.

Чтобы обеспечить протекание тока через приемник, необходимо образовать замкнутый контур, по которому течет ток. Для этого необходимо один вывод приемника электрической энергии подсоединить к отрицательному выводу батарейки, а другой к положительному выводу. Простейший способ управления прохождением тока по цепи заключается в замыкании и размыкании контура цепи с помощью переключателя. Размыкание контура цепи приводит к разрыву цепи, вследствие чего ток становится равным нулю. Замыкание цепи обеспечивает путь для прохождения по цепи тока, величина которого определяется приложенным напряжением и сопротивлением цепи согласно закону Ома.

Порядок про ведения работы

1. Запустить Electronics Workbench.

2. Подготовить новый файл для работы. Для этого необходимо выполнить следующие операции из меню: File/New и File/Save as . При выполнении операции Save as будет необходимо указать имя файла и каталог, в котором будет храниться схема.

3. Перенесите необходимые элементы из заданной схемы на рабочую область Electronics Workbench. Для этого необходимо выбрать раздел на панели инструментов (Sources, Basic, Diodes, Transistors, Analog Ics, Mixed Ics, Digital Ics, Logic Gates, Digital, Indicators, Controls, Miscellaneous, Instruments), в котором находится нужный вам элемент, затем перенести его на рабочую область (щёлкнуть мышью на нужном элементе и, не отпуская кнопки, перенести в нужное место схемы).

Workbench также предоставляет возможность использовать настраиваемую панель инструментов Favorites. Панель своя для каждого файла схемы.

Для добавления в панель элемента надо щёлкнуть его изображение на панели правой кнопкой и выбрать Add to Favorites . Чтобы убрать с панели Favorites , щёлкнуть правой кнопкой элемент на панели Favorites и выбрать Remove from Favorites .

4. Соедините контакты элементов и расположите элементы в рабочей области для получения необходимой вам схемы. Для соединения двух контактов необходимо щелкнуть по одному из контактов основной кнопкой мыши и, не отпуская клавишу, довести курсор до второго контакта.

В случае необходимости можно добавить дополнительные узлы (разветвления). Для этого надо просто перетащить элемент с панели на место проводника, где надо его разветвить.

Нажатием на элементе правой кнопкой мыши можно получить быстрый доступ к простейшим операциям над положением элемента, таким как вращение (rotate), разворот (flip), копирование/вырезание (copy/cut), вставка (paste), а также к его справочной информации (help).

5. Проставить необходимые номиналы и свойства каждому элементу. Для этого нужно дважды щелкнуть мышью на элементе:

6. Когда схема собрана и готова к запуску, нажать кнопку включения питания на панели инструментов.

В случае серьезной ошибки в схеме (замыкание элемента питания накоротко, отсутствие нулевого потенциала в схеме) будет выдано предупреждение.

Закон Ома

Закон Ома для участка цепи: ток в проводнике I равен отношению падения напряжения U на участке цепи к ее электрическому сопротивлению R :

Закон иллюстрируется схемой на рисунке, из которой видно, что на участке цепи с сопротивлением R = 5 Ом создается падение напряжения U = 10 В, измеряемое вольтметром. Согласно (*) ток в цепи I = = 0.2 А = 200 mA, что и измеряет последовательно включенный в цепь амперметр.

Понравилось? Лайкни нас на Facebook