3х мерная графика. Трехмерная графика в современном мире. Визуализация трёхмерной графики в играх и прикладных программах

Трёхмерная графика не обязательно включает в себя проецирование на плоскость.....

Энциклопедичный YouTube

    1 / 5

    ✪ Теория 3D Графики, урок 01 - Введение в 3D Графику

    ✪ Компьютерная графика в кино

    ✪ Лекция 1 | Компьютерная графика | Виталий Галинский | Лекториум

    ✪ 12 - Компьютерная графика. Основные понятия компьютерной графики

    ✪ Лекция 4 | Компьютерная графика | Виталий Галинский | Лекториум

    Субтитры

Применение

Трёхмерная графика активно применяется для создания изображений на плоскости экрана или листа печатной продукции в науке и промышленности , например, в системах автоматизации проектных работ (САПР; для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая «виртуальная археология »), в современных системах медицинской визуализации .

Самое широкое применение - во многих современных компьютерных играх , а также как элемент кинематографа , телевидения , печатной продукции .

Трёхмерная графика обычно имеет дело с виртуальным , воображаемым трёхмерным пространством, которое отображается на плоской, двухмерной поверхности дисплея или листа бумаги. В настоящее время известно несколько способов отображения трёхмерной информации в объемном виде, хотя большинство из них представляет объёмные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D-дисплеи, способные демонстрировать трёхмерное изображение. Несколько производителей продемонстрировали готовые к серийному производству трёхмерные дисплеи . Однако и 3D-дисплеи по-прежнему не позволяют создавать полноценной физической, осязаемой копии математической модели, создаваемой методами трёхмерной графики. Развивающиеся с 1990-х годов технологии быстрого прототипирования ликвидируют этот пробел. Следует заметить, что в технологиях быстрого прототипирования используется представление математической модели объекта в виде твердого тела (воксельная модель).

Создание

Для получения трёхмерного изображения на плоскости требуются следующие шаги:

  • моделирование - создание трёхмерной математической модели сцены и объектов в ней;
  • текстурирование - назначение поверхностям моделей растровых или процедурных текстур (подразумевает также настройку свойств материалов - прозрачность, отражения, шероховатость и пр.);
  • освещение - установка и настройка ;
  • анимация (в некоторых случаях) - придание движения объектам;
  • динамическая симуляция (в некоторых случаях) - автоматический расчёт взаимодействия частиц, твёрдых/мягких тел и пр. с моделируемыми силами гравитации , ветра , выталкивания и др., а также друг с другом;
  • рендеринг (визуализация) - построение проекции в соответствии с выбранной физической моделью;
  • композитинг (компоновка) - доработка изображения;
  • вывод полученного изображения на устройство вывода - дисплей или специальный принтер.

Моделирование

Наиболее популярными пакетами сугубо для моделирования являются:

  • Robert McNeel & Assoc. Rhinoceros 3D ;

Для создания трёхмерной модели человека или существа может быть использована как прообраз (в большинстве случаев) Скульптура .

Текстурирование

SketchUp

Визуализация трёхмерной графики в играх и прикладных программах

Есть ряд программных библиотек для визуализации трёхмерной графики в прикладных программах - DirectX, OpenGL и так далее.

Есть ряд подходов по представлению 3D-графики в играх - полное 3D, псевдо-3D.

Такие пакеты даже не всегда дают пользователю оперировать 3D-моделью напрямую, например, есть пакет OpenSCAD , модель в котором формируется выполнением формируемого пользователем скрипта, написанного на специализированном языке.

Трёхмерные дисплеи

Трёхмерные, или стереоскопические дисплеи , (3D displays, 3D screens) - дисплеи, посредством стереоскопического или какого-либо другого эффекта создающие иллюзию реального объёма у демонстрируемых изображений.

В настоящее время подавляющее большинство трёхмерных изображений показывается при помощи стереоскопического эффекта, как наиболее лёгкого в реализации, хотя использование одной лишь стереоскопии нельзя назвать достаточным для объёмного восприятия. Человеческий глаз как в паре, так и в одиночку одинаково хорошо отличает объёмные объекты от плоских изображений [ ] .

Вопрос о том, что же является двигателем всей компьютерной индустрии, давно заботит многих пользователей. То ли это фирма Intel, которая, не переставая, выпускает и выпускает новые процессоры. Но кто тогда заставляет их покупать? Может, во всем виноват Microsoft, который непрерывно делает свои окна больше и краше? Да нет, можно ведь довольствоваться старыми версиями программ - тем более спектр их возможностей практически не изменяется. Вывод напрашивается сам собой - во всем виноваты игры. Да, именно игры стремятся все более и более уподобиться реальному миру, создавая его виртуальную копию, хотят все более мощных ресурсов.

Вся история компьютерной графики на PC является тому подтверждением. Вспомните, в начале были тетрисы, диггеры, арканоиды. Вся графика заключалась в перерисовке небольших участков экрана, спрайтов, и нормально работала даже на XT. Но прошли те времена. Взошла звезда симуляторов.

С выходом таких игр, как F19, Formula 1 и т.п., в которых приходилось уже перерисовывать весь экран, предварительно заготавливая его в памяти, всем нам пришлось обзавестись, по крайней мере, 286 процессором. Но прогресс на этом не остановился. Желание уподобить виртуальный мир в игре реальному миру усилилось, и появился Wolf 3D.

Это, можно сказать, первая 3D-игра, в которой был смоделирован какой-никакой, но все же реалистичный мир. Для его реализации пришлось использовать верхнюю (более 640 Кб) память и загнать программу в защищенный режим. Для полноценной игры пришлось установить процессор 80386. Но и мир Wolf 3D страдал недостатками. Хотя стены и были не просто одноцветными прямоугольниками, но для их закраски использовались текстуры с небольшим разрешением, поэтому поверхности смотрелись прилично лишь на расстоянии. Конечно, можно было пойти по пути наращивания разрешения текстур, вспомним, например, DOOM. Тогда нам пришлось снова перейти на более новый процессор и увеличить количество памяти. Правда, все равно, хотя изображение и улучшилось, но ему были присущи все те же недостатки. Да и плоские объекты и монстры - кому это интересно. Тут то и взошла звезда Quake. В этой игре был применен революционный подход - z-буфер, позволивший придать объемность всем объектам. Однако вся игра все равно работала в невысоком разрешении и не отличалась высокой реалистичностью.

Назревало новое аппаратное решение. И решение это оказалось, в общем-то, лежащим на поверхности. Раз пользователи хотят играть в трехмерном виртуальном мире, то процесс его создания (вспомним минуты ожидания, проведенные за 3D Studio перед появлением очередной картинки) надо кардинально ускорить. А раз центральный процессор с этой задачей справляется из рук вон плохо, было принято революционное решение - сделать специализированный.

Тут то и вылез производитель игровых автоматов 3Dfx, сделавший эту сказку былью с помощью своего графического процессора Voodoo. Человечество сделало еще один шаг в виртуальный мир.

А поскольку операционной системы на PC с текстурными окнами, уплывающими назад, в туман, пока нет, и не предвидится, весь аппарат трехмерной графики можно пока применить только к играм, что успешно делает все цивилизованное человечество.

Модель

Для изображения трехмерных объектов на экране монитора требуется проведение серии процессов (обычно называемых конвейером) с последующей трансляцией результата в двумерный вид. Первоначально, объект представляется в виде набора точек, или координат, в трехмерном пространстве. Трехмерная система координат определяется тремя осями: горизонтальной, вертикальной и глубины, обычно называемых, соответственно осями x, y и z. Объектом может быть дом, человек, машина, самолет или целый 3D мир и координаты определяют положение вершин (узловых точек), из которых состоит объект, в пространстве. Соединив вершины объекта линиями, мы получим каркасную модель, называемую так из-за того, что видимыми являются только края поверхностей трехмерного тела. Каркасная модель определяет области, составляющие поверхности объекта, которые могут быть заполнены цветом, текстурами и освещаться лучами света.

Рис. 1: Каркасная модель куба

Даже при таком упрощенном объяснении конвейера 3D графики становится ясно, как много требуется вычислений для прорисовки трехмерного объекта на двумерном экране. Можно представить, насколько увеличивается объем требуемых вычислений над системой координат, если объект движется.


Рис. 2: Модель самолета с закрашенными поверхностями

Роль API

Программируемый интерфейс приложений (API) состоит из функций, управляющих 3D конвейером на программном уровне, но при этом может использовать преимущества аппаратной реализации 3D, в случае наличия этой возможности. Если имеется аппаратный ускоритель, API использует его преимущества, если нет, то API работает с оптимальными настройками, рассчитанными на самые обычные системы. Таким образом, благодаря применению API, любое количество программных средств может поддерживаться любым количеством аппаратных 3D ускорителей.

Для приложений общего и развлекательного направления, существуют следующие API:

  • Microsoft Direct3D
  • Criterion Renderware
  • Argonaut BRender
  • Intel 3DR
Компания Apple продвигает свой собственный интерфейс Rave, созданный на основе их собственного API Quickdraw 3D.

Для профессиональных приложений, работающих под управлением WindowsNT доминирует интерфейс OpenGL. Компания Autodesk, крупнейший производитель инженерных приложений, разработала свой собственный API, называемый Heidi.
Свои API разработали и такие компании, как Intergraph - RenderGL, и 3DFX - GLide.

Существование и доступность 3D интерфейсов, поддерживающих множество графических подсистем и приложений, увеличивает потребность в аппаратных ускорителях трехмерной графике, работающих в режиме реального времени. Развлекательные приложения, главный потребитель и заказчик таких ускорителей, но не стоит забывать и о прфессиональных приложениях для обработки 3D графики, работающих под управлением Windows NT, многие из которых переносятся с высокопроизводительных рабочих станций, типа Silicon Graphics, на PC платформу. Интернет приложения сильно выиграют от невероятной маневренности, интуитивности и гибкости, которые обеспечивает применение трехмерного графического интерфейса. Взаимодействие в World Wide Web будет гораздо проще и удобнее, если будет происходить в трехмерном пространстве.

Графический ускоритель

Рынок графических подсистем до появления понятия малтимедиа был относительно прост в развитии. Важной вехой в развитии был стандарт VGA (Video graphics Array), разработанный компанией IBM в 1987 году, благодаря чему производители видеоадаптеров получили возможность использовать более высокое разрешение (640х480) и большую глубину представления цвета на мониторе компьютера. С ростом популярности ОС Windows, появилась острая потребность в аппаратных ускорителях двумерной графики, чтобы разгрузить центральный процессор системы, вынужденный обрабатывать дополнительные события. Отвлечение CPU на обработку графики существенно влияет на общую производительность GUI (Graphical User Interface) - графического интерфеса пользователя, а так как ОС Windows и приложениям для нее требуется как можно больше ресурсов центрального процессора, обработка графики осуществлялась с более низким приоритетом, т.е. делалась очень медленно. Производители добавили в свои продукты функции обработки двумерной графики, такие, как прорисовка окон при открытии и свертовании, аппаратный курсор, постоянно видимый при перемещении указателя, закраска областей на экране при высокой частоте регенерации изображения. Итак, появился процессор, обеспечивающий ускорение VGA (Accelerated VGA - AVGA), также известный, как Windows или GUI ускоритель, который стал обязательным элементом в современных компьютерах.

Внедрение малтимедиа создало новые проблемы, вызванные добавлением таких компонентов, как звук и цифровое видео к набору двумерных графических функций. Сегодня легко заметить, что многие продукты AVGA поддерживают на аппаратном уровне обработку цифрового видео. Следовательно, если на Вашем мониторе видео проигрывается в окне, размером с почтовую марку - пора установить в Вашей машине малтимедиа ускоритель . Малтимедиа ускоритель (multimedia accelerator) обычно имеет встроенные аппаратные функции, позволяющие масштабировать видеоизображение по осям x и y, а также аппаратно преобразовывать цифровой сигнал в аналоговый, для вывода его на монитор в формате RGB. Некоторые малтимедиа акселлераторы могут также иметь встроенные возможности декомпресси цифрового видео.

Разработчики графических подсистем должны исходить из требований, частично диктуемых размерами компьютерного монитора, частично под влиянием GUI, и частично под влиянием графического процессора. Первичный стандарт VGA с разрешением 640х480 пикселов был адекватен 14" мониторам, наиболее распространенных в то время. Сегодня наиболее предпочтительны мониторы с размером диагонали трубки 17", благодаря возможности выводить изображения с разрешением 1024х768 и более.

Основной тенденцией при переходе от VGA к малтимедиа ускорителям была возможность размещения как можно больше визуальной информации на мониторе компьютера. Использование 3D графики является логичным развитием этой тенденции. Огроммные объемы визуальной информации могут быть втиснуты в ограниченное пространство экрана монитора, если она представляется в трехмерном виде. Обработка трехмерной графики в режиме реального времени дает возможность пользователю легко оперировать представляемыми данными.

Игровые двигатели (Games engines)

Первое правило компьютерных игр - нет никаких правил. Традиционно, разработчики игр больше заинтересованы в крутой графике своих программ, чем следованию рекомендаций технарей. Не взирая на то, что в распоряжении разработчиков имеется множество трехмерных API, например - Direct3D, некоторые программисты идут по пути создания собственного 3D игрового интерфейса или двигателя. Собственные игровые двигатели - один из путей для разработчиков добиться невероятной реалистичности изображения, фактически на пределе возможностей графического программирования.

Нет ничего более желанного для разработчика, чем иметь прямой доступ к аппаратным функциям компонентов системы. Несколько известных разработчиков создали свои собственные игровые двигатели, работающие с оптимальным использованием аппаратных ускорителей графики, которые принесли им известность и деньги. Например, двигатели Interplay для Descent II и id Software для Quake, обеспечивают истинную трехмерность действия, используя наполную аппаратные функции 3D, если они доступны.

Графика без компромисов

Разговоры, ведущиеся уже довольно долгое время, о перспективах применения трехмерной графики в таких областях, как развлечения и бизнес, допредела подогрели интерес потенциальных пользователей, на рынке уже появился новый тип продуктов. Эти новые технологические решения, совмещают в себе великолепную поддержку 2D графики, соответствующую сегодняшним требованиям к Windows акселлераторам, аппаратную поддержку функций 3D графики и проигрывают цифровое видео с требуемой частотой смены кадров.
В принципе, эти продукты можно смело отнести к новому поколению графических подсистем, обеспечивающих графику без компромиссов, занимающих достойное место стандартного оборудования в настольных вычислительных системах.
Среди представителей нового поколения можно назвать, в качестве примера, следующие продукты:

  • процессор Ticket-To-Ride компании Number Nine Visual Technologies
  • серия процессоров ViRGE компании S3 Inc.
  • процессор RIVA128 , разработанный совместно компаниями SGS Thomson и nVidia

Технология 3D-графики

Пусть нам все-таки удалось убедить Вас попробовать трехмерную графику в действии (если Вы до сих пор не сделали это), и Вы решили сыграть в одну из трехмерных игр, предназначенных для применения 3D-видеокарты.
Допустим, такой игрой оказался симулятор автомобильных гонок, и Ваша машина уже стоит на старте, готовая устремиться к покорению новых рекордов. Идет предстартовый обратный отсчет, и Вы замечаете, что вид из кабины, отображаемый на экране монитора, немного отличается от привычного.
Вы и прежде участвовали в подобных гонках, но впервые изображение поражает Вас исключительным реализмом, заставляя поверить в действительность происходящего. Горизонт, вместе с удаленными объектами, тонет в утренней дымке. Дорога выглядит необычайно ровно, асфальт представляет собой не набор грязно-серых квадратов, а однотонное покрытие с нанесенной дорожной разметкой. Деревья вдоль дороги действительно имеют лиственные кроны, в которых, кажется, можно различить отдельные листья. От всего экрана в целом складывается впечатление как от качественной фотографии с реальной перспективой, а не как от жалкой попытки смоделировать реальность.

Попробуем разобраться, какие же технические решения позволяют 3D-видеокартам передавать виртуальную действительность с такой реалистичностью. Каким образом изобразительным средствам PC удалось достигнуть уровня профессиональных студий, занимающихся трехмерной графикой.

Часть вычислительных операций, связанных с отображением и моделированием трехмерного мира переложено теперь на 3D-акселератор, который является сердцем 3D-видеокарты. Центральный процессор теперь практически не занят вопросами отображения, образ экрана формирует видеокарта. В основе этого процесса лежит реализация на аппаратном уровне ряда эффектов, а также применение несложного математического аппарата. Попробуем разобраться, что же конкретно умеет графический 3D-процессор.

Возвращаясь к нашему примеру с симулятором гонок, задумаемся, каким образом достигается реалистичность отображения поверхностей дороги или зданий, стоящих на обочине. Для этого применяется распространенный метод, называемый текстурирование (texture mapping).
Это самый распространенный эффект для моделирования поверхностей. Например, фасад здания потребовал бы отображения множества граней для моделирования множества кирпичей, окон и дверей. Однако текстура (изображение, накладываемое на всю поверхность сразу) дает больше реализма, но требует меньше вычислительных ресурсов, так как позволяет оперировать со всем фасадом как с единой поверхностью. Перед тем, как поверхности попадают на экран, они текстурируются и затеняются. Все текстуры хранятся в памяти, обычно установленной на видеокарте. Кстати, здесь нельзя не заметить, что применение AGP делает возможным хранение текстур в системной памяти, а ее объем гораздо больше.

Очевидно, что когда поверхности текстурируются, необходим учет перспективы, например, при отображении дороги с разделительной полосой, уходящей за горизонт. Перспективная коррекция необходима для того, чтобы текстурированные объекты выглядели правильно. Она гарантирует, что битмэп правильно наложится на разные части объекта - и те, которые ближе к наблюдателю, и на более далекие.
Коррекция с учетом перспективы очень трудоемкая операция, поэтому нередко можно встретить не совсем верную ее реализацию.

При наложении текстур, в принципе, также можно увидеть швы между двумя ближайшими битмэпами. Или, что бывает чаще, в некоторых играх при изображении дороги или длинных коридоров заметно мерцание во время движения. Для подавления этих трудностей применяется фильтрация (обычно Bi- или tri-линейная).

Билинейная фильтрация - метод устранения искажений изображения. При медленном вращении или движении объекта могут быть заметны перескакивания пикселов с одного места на другое, что и вызывает мерцание. Для снижения этого эффекта при билинейной фильтрации для отображения точки поверхности берется взвешенное среднее четырех смежных текстурных пикселов.

Трилинейная фильтрация несколько сложнее. Для получения каждого пиксела изображения берется взвешенное среднее значение результатов двух уровней билинейной фильтрации. Полученное изображение будет еще более четкое и менее мерцающее.

Текстуры, с помощью которых формируется поверхность объекта, изменяют свой вид в зависимости от изменения расстояния от объекта до положения глаз зрителя. При движущемся изображении, например, по мере того, как объект удаляется от зрителя, текстурный битмэп должен уменьшаться в размерах вместе с уменьшением размера отображаемого объекта. Для того чтобы выполнить это преобразование, графический процессор преобразует битмэпы текстур вплоть до соответствующего размера для покрытия поверхности объекта, но при этом изображение должно оставаться естественным, т.е. объект не должен деформироваться непредвиденным образом.

Для того, чтобы избежать непредвиденных изменений, большинство управляющих графикой процессов создают серии предфильтрованных битмэпов текстур с уменьшенным разрешением, этот процесс называется mip mapping . Затем, графическая программа автоматически определяет, какую текстуру использовать, основываясь на деталях изображения, которое уже выведено на экран. Соответственно, если объект уменьшается в размерах, размер его текстурного битмэпа тоже уменьшается.

Но вернемся в наш гоночный автомобиль. Сама дорога уже выглядит реалистично, но проблемы наблюдаются с ее краями! Вспомните, как выглядит линия, проведенная на экране не параллельно его краю. Вот и у нашей дороги появляются "рваные края". И для борьбы с этим недостатком изображения применяется .

Рваные края Ровные края

Это способ обработки (интерполяции) пикселов для получения более четких краев (границ) изображения (объекта). Наиболее часто используемая техника - создание плавного перехода от цвета линии или края к цвету фона. Цвет точки, лежащей на границе объектов определяется как среднее цветов двух граничных точек. Однако в некоторых случаях, побочным эффектом anti-aliasing является смазывание (blurring) краев.

Мы подходим к ключевому моменту функционирования всех 3D-алгоритмов. Предположим, что трек, по которому ездит наша гоночная машина, окружен большим количеством разнообразных объектов - строений, деревьев, людей.
Тут перед 3D-процессором встает главная проблема, как определить, какие из объектов находятся в области видимости, и как они освещены. Причем, знать, что видимо в данный момент, недостаточно. Необходимо иметь информацию и о взаимном расположении объектов. Для решения этой задачи применяется метод, называемый z-буферизация . Это самый надежный метод удаления скрытых поверхностей. В так называемом z-буфере хранятся значения глубины всех пикселей (z-координаты). Когда рассчитывается (рендерится) новый пиксел, его глубина сравнивается со значениями, хранимыми в z-буфере , а конкретнее с глубинами уже срендеренных пикселов с теми же координатами x и y. Если новый пиксел имеет значение глубины больше какого-либо значения в z-буфере, новый пиксел не записывается в буфер для отображения, если меньше - то записывается.

Z-буферизация при аппаратной реализации сильно увеличивает производительность. Тем не менее, z-буфер занимает большие объемы памяти: например даже при разрешении 640x480 24-разрядный z-буфер будет занимать около 900 Кб. Эта память должна быть также установлена на 3D-видеокарте.

Разрешающая способность z-буфера - самый главный его атрибут. Она критична для высококачественного отображения сцен с большой глубиной. Чем выше разрешающая способность, тем выше дискретность z-координат и точнее выполняется рендеринг удаленных объектов. Если при рендеринге разрешающей способности не хватает, то может случиться, что два перекрывающихся объекта получат одну и ту же координату z, в результате аппаратура не будет знать какой объект ближе к наблюдателю, что может вызвать искажение изображения.
Для избежания этих эффектов профессиональные платы имеют 32-разрядный z-буфер и оборудуются большими объемами памяти.

Кроме вышеперечисленных основ, трехмерные графические платы обычно имеют возможность воспроизведения некоторого количества дополнительных функций. Например, если бы Вы на своем гоночном автомобиле въехали бы в песок, то обзор бы затруднился поднявшейся пылью. Для реализации таких и подобных эффектов применяется fogging (затуманивание). Этот эффект образуется за счет комбинирования смешанных компьютерных цветовых пикселов с цветом тумана (fog) под управлением функции, определяющей глубину затуманивания. С помощью этого же алгоритма далеко отстоящие объекты погружаются в дымку, создавая иллюзию расстояния.

Реальный мир состоит из прозрачных, полупрозрачных и непрозрачных объектов. Для учета этого обстоятельства, применяется alpha blending - способ передачи информации о прозрачности полупрозрачных объектов. Эффект полупрозрачности создается путем объединения цвета исходного пиксела с пикселом, уже находящимся в буфере.
В результате цвет точки является комбинацией цветов переднего и заднего плана. Обычно, коэффициент alpha имеет нормализованное значение от 0 до 1 для каждого цветного пиксела. Новый пиксел = (alpha)(цвет пиксела А) + (1 - alpha)(цвет пиксела В).

Очевидно, что для создания реалистичной картины происходящего на экране необходимо частое обновление его содержимого. При формировании каждого следующего кадра, 3D-акселератор проходит весь путь подсчета заново, поэтому он должен обладать немалым быстродействием. Но в 3D-графике применяются и другие методы придания плавности движению. Ключевой - Double Buffering .
Представьте себе старый трюк аниматоров, рисовавших на уголках стопки бумаги персонаж мультика, со слегка изменяемым положением на каждом следующем листе. Пролистав всю стопку, отгибая уголок, мы увидим плавное движение нашего героя. Практически такой же принцип работы имеет и Double Buffering в 3D анимации, т.е. следующее положение персонажа уже нарисовано, до того, как текущая страница будет пролистана. Без применения двойной буферизации изображение не будет иметь требуемой плавности, т.е. будет прерывистым. Для двойной буферизации требуется наличие двух областей, зарезервированных в буфере кадров трехмерной графической платы; обе области должны соответствовать размеру изображения, выводимого на экран. Метод использует два буфера для получения изображения: один для отображения картинки, другой для рендеринга. В то время как отображается содержимое одного буфера, в другом происходит рендеринг. Когда очередной кадр обработан, буфера переключаются (меняются местами). Таким образом, играющий все время видит отличную картинку.

В заключение обсуждения алгоритмов, применяемых в 3D-графических акселераторах, попробуем разобраться, каким же образом применение всех эффектов по отдельности позволяет получить целостную картину. 3D-графика реализуется с помощью многоступенчатого механизма, называемого конвейером рендеринга.
Применение конвейерной обработки позволяет еще ускорить выполнение расчетов за счет того, что вычисления для следующего объекта могут быть начаты до окончания вычислений предыдущего.

Конвейер рендеринга может быть разделен на 2 стадии: геометрическая обработка и растеризация.

На первой стадии геометрической обработки выполняется преобразование координат (вращение, перенос и масштабирование всех объектов), отсечение невидимых частей объектов, расчет освещения, определение цвета каждой вершины с учетом всех световых источников и процесс деления изображения на более мелкие формы. Для описания характера поверхности объекта она делится на всевозможные многоугольники.
Наиболее часто при отображении графических объектов используется деление на треугольники и четырехугольники, так как они легче всего обсчитываются и ими легко манипулировать. При этом координаты объектов переводятся из вещественного в целочисленное представление для ускорения вычислений.

На второй стадии к изображению применяются все описанные эффекты в следующей последовательности: удаление скрытых поверхностей, наложение с учетом перспективы текстур (используя z-буфер), применение эффектов тумана и полупрозрачности, anti-aliasing. После этого очередная точка считается готовой к помещению в буфер со следующего кадра.

Из всего вышеуказанного можно понять, для каких целей используется память, установленная на плате 3D-акселератора. В ней хранятся текстуры, z-буфер и буфера следующего кадра. При использовании шины PCI, использовать для этих целей обычную оперативную память нельзя, так как быстродействие видеокарты существенно будет ограничено пропускной способностью шины. Именно по этому для развития 3D-графики особенно перспективно продвижение шины AGP, позволяющее соединить 3D-чип с процессором напрямую и тем самым организовать быстрый обмен данными с оперативной памятью. Это решение, к тому же, должно удешевить трехмерные акселераторы за счет того, что на борту платы останется лишь немного памяти собственно для кадрового буфера.

Заключение

Повсеместное внедрение 3D-графики вызвало увеличение мощности компьютеров без какого-либо существенного увеличения их цены. Пользователи ошеломлены открывающимися возможностями и стремятся попробовать их у себя на компьютерах. Множество новых 3D-карт позволяют пользователям видеть трехмерную графику в реальном времени на своих домашних компьютерах. Эти новые акселераторы позволяют добавлять реализм к изображениям и ускорять вывод графики в обход центрального процессора, опираясь на собственные аппаратные возможности.

Хотя в настоящее время трехмерные возможности используются только в играх, думается, деловые приложения также смогут впоследствии извлечь из них выгоду. Например, средства автоматизированного проектирования уже нуждаются в выводе трехмерных объектов. Теперь создание и проектирование будет возможно и на персональном компьютере благодаря открывающимся возможностям. Трехмерная графика, возможно, сможет также изменить способ взаимодействия человека с компьютером. Использование трехмерных интерфейсов программ должно сделать процесс общения с компьютером еще более простым, чем в настоящее время.

3D-моделирование и визуализация необходимы при производстве продуктов или их упаковки, а также при создании прототипов изделий и создании объемной анимации.

Таким образом, услуги по 3D-моделированию и визуализации предоставляются тогда, когда:

  • нужна оценка физических и технических особенностей изделия еще до его создания в оригинальном размере, материале и комплектации;
  • необходимо создать 3D-модель будущего интерьера.

В таких случаях вам точно придется прибегнуть к услугам специалистов в области 3д-моделирования и визуализации.

3D-модели - неотъемлемая составляющая качественных презентаций и технической документации, а также - основа для создания прототипа изделия. Особенность нашей компании - в возможности проведения полного цикла работ по созданию реалистичного 3D-объекта: от моделирования и до прототипирования. Поскольку все работы можно провести в комплексе, это существенно сокращает время и затраты на поиск исполнителей и постановку новых технических заданий.

Если речь идет о продукте, мы поможем вам выпустить его пробную серию и наладить дальнейшее производство, мелкосерийное или же промышленных масштабов.

Определение понятий «3D-моделирование» и «визуализация»

Трехмерная графика или 3D-моделирование - компьютерная графика, сочетающая в себе приемы и инструменты, необходимые для создания объемных объектов в техмерном пространстве.

Под приемами стоит понимать способы формирования трехмерного графического объекта - расчет его параметров, черчение «скелета» или объемной не детализированной формы; выдавливание, наращивание и вырезание деталей и т.д.

А под инструментами - профессиональные программы для 3D-моделирования. В первую очередь - SolidWork, ProEngineering, 3DMAX, а также некоторые другие программы для объемной визуализации предметов и пространства.

Объемный рендеринг - это создание двухмерного растрового изображения на основе построенной 3d-модели. По своей сути, это максимально реалистичное изображение объемного графического объекта.

Области применения 3D-моделирования :

  • Реклама и маркетинг

Трехмерная графика незаменима для презентации будущего изделия. Для того, чтобы приступить к производству необходимо нарисовать, а затем создать 3D-модель объекта. А, уже на основе 3D-модели, с помощью технологий быстрого прототипирования (3D-печать, фрезеровка, литье силиконовых форм и т.д.), создается реалистичный прототип (образец) будущего изделия.

После рендеринга (3D-визуализации), полученное изображение можно использовать при разработке дизайна упаковки или при создании наружной рекламы , POS-материалов и дизайна выставочных стендов.

  • Городское планирование

С помощью трехмерной графики достигается максимально реалистичное моделирование городской архитектуры и ландшафтов - с минимальными затратами. Визуализация архитектуры зданий и ландшафтного оформления дает возможность инвесторам и архитекторам ощутить эффект присутствия в спроектированном пространстве. Что позволяет объективно оценить достоинства проекта и устранить недостатки.

  • Промышленность

Современное производство невозможно представить без допроизводственного моделирования продукции. С появлением 3D-теxнологий производители получили возможность значительной экономии материалов и уменьшения финансовых затрат на инженерное проектирование. С помощью 3D-моделирования дизайнеры-графики создают трехмерные изображения деталей и объектов, которые в дальнейшем можно использовать для создания пресс-форм и прототипов объекта.

  • Компьютерные игры

Технология 3D при создании компьютерных игр используется уже более десяти лет. В профессиональных программах опытные специалисты вручную прорисовывают трехмерные ландшафты, модели героев, анимируют созданные 3D-объекты и персонажи, а также создают концепт-арты (концепт-дизайны).

  • Кинематограф

Вся современная киноиндустрия ориентируется на кино в формате 3D. Для подобных съемок используются специальные камеры, способные снимать в 3D-формате. Кроме того, с помощью трехмерной графики для киноиндустрии создаются отдельные объекты и полноценные ландшафты.

  • Архитектура и дизайн интерьеров

Технология 3д-моделирования в архитектуре давно зарекомендовала себе с наилучшей стороны. Сегодня создание трехмерной модели здания является незаменимым атрибутом проектирования. На основании 3d модели можно создать прототип здания. Причем, как прототип, повторяющий лишь общие очертания здания, так и детализированную сборную модель будущего строения.+

Что же касается дизайна интерьеров, то, с помощью технологии 3d-моделирования, заказчик может увидеть, как будет выглядеть его жилище или офисное помещение после проведения ремонта.

  • Анимация

С помощью 3D-графики можно создать анимированного персонажа, «заставить» его двигаться, а также, путем проектирования сложных анимационных сцен, создать полноценный анимированный видеоролик.

Этапы разработки 3D-модели

Разработка 3D-модели осущеcтвляется в несколько этапов :

1. Моделирование или создание геометрии модели

Речь идет о создании трехмерной геометрической модели, без учета физических свойств объекта. В качестве приемов используется:

  • выдавливание;
  • модификаторы;
  • полигональное моделирование;
  • вращение.

2. Текстурирование объекта

Уровень реалистичности будущей модели напрямую зависит от выбора материалов при создании текстур. Профессиональные программы для работы с трехмерной графикой практически не ограничены в возможностях для создания реалистичной картинки.

3. Выставление света и точки наблюдения

Один из самых сложных этапов при создании 3D-модели. Ведь именно от выбора тона света, уровня яркости, резкости и глубины теней напрямую зависит реалистичное восприятие изображения. Кроме того, необходимо выбрать точку наблюдения за объектом. Это может быть вид с высоты птичьего полета или масштабирование пространства с достижением эффекта присутствия в нем - путем выбора вида на объект с высоты человеческого роста.+

4. 3D-визуализация или рендеринг

Завершающий этап 3D-моделирования. Он заключается в детализации настроек отображения 3D-модели. То есть добавление графических спецэффектов, таких, как блики, туман, сияние и т.д. В случае видео-рендеринга, определяются точные параметры 3D-анимации персонажей, деталей, ландшафтов и т.п. (время цветовых перепадов, свечения и др.).

На этом же этапе детализируются настройки визуализации: подбирается нужное количество кадров в секунду и расширение итогового видео (например, DivX, AVI, Cinepak, Indeo, MPEG-1, MPEG-4, MPEG-2, WMV и т.п.). В случае необходимости получить двухмерное растровое изображение, определяется формат и разрешение изображения, в основном - JPEG, TIFF или RAW.

5. Постпродакшн

Обработка отснятых изображений и видео с помощью медиа-редакторов - Adobe Photoshop, Adobe Premier Pro (или Final Cut Pro/ Sony Vegas), GarageBand, Imovie, Adobe After Effects Pro, Adobe Illustrator, Samplitude, SoundForge, Wavelab и др.

Постпродакшн заключается в придании медиа-файлам оригинальных визуальных эффектов, цель которых - взбудоражить сознание потенциального потребителя: впечатлить, вызвать интерес и запомниться на долго!

3D-моделирование в литейном производстве

В литейном производстве 3D-моделирование постепенно становится незаменимой технологической составляющей процесса создания изделия. Если речь идет о литье в металлические пресс формы, то 3D-модели таких пресс-форм создаются с помощью технологий 3D-моделирования, а также 3D-прототипирования.

Но не меньшую популярность сегодня набирает литье в силиконовые формы. В данном случае - 3D-моделирование и визуализация помогут вам создать прототип объекта, на основе которого будет сделана форма из силикона либо другого материала (дерево, полиуретан, алюминий и т.д.).

Методы 3D-визуализации (рендеринг)

1. Растеризация.

Один из самых простых методов рендеринга. При его использовании не учитываются дополнительные визуальные эффекты (например, цвет и тень объекта относительно точки наблюдения).

2. Рейкастинг.

3D-модель осматривается с определенной, заранее заданной точки - с высоты человеческого роста, высоты птичьего полета и т.д. Из точки наблюдения направляются лучи, которые определяют светотени объекта, когда происходит его рассмотрения в привычном формате 2D.

3. Трассировка лучей.

Данный метод рендеринга подразумевает то, что, при попадании на поверхность, луч разделяется на три компонента: отраженный, теневой и преломленный. Собственно это и формирует цвет пиксела. Помимо этого, от количества разделений напрямую зависит реалистичность изображения.

4. Трассировка пути.

Один из самых сложных методов 3D-визуализации. При использовании данного метода 3D-рендеринга распространение световых лучей максимально приближено к физическим законам распространения света. Именно это и обеспечивает высокую реалистичность конечного изображения. Стоит отметить, что данный метод отличается ресурсоемкостью.

Наша компания предоставит вам полный спектр услуг в области 3D-моделирования и визуализации. Мы располагаем всеми техническими возможностями для создания 3D-моделей различной сложности. А также имеем большой опыт работы в 3d-визуализации и моделировании, в чем можно лично убедиться, изучив наше портфолио, или другие наши работы, пока не представленные на сайте (по запросу).

Бренд-агентство KOLORO окажет вам услуги по выпуску пробной серии продукции или ее мелкосерийному производству . Для этого наши специалисты создадут максимально реалистичную 3D-модель нужного вам объекта (упаковки, логотипа, персонажа, 3D-образца любого изделия, формы для литья и мн. др.), на основе которого будет создан прототип изделия. Стоимость нашей работы напрямую зависит от сложности объекта 3D-моделирования и обсуждается в индивидуальном порядке.

Как говорилось выше, по способам описания изображений компьютерную графику можно разделить на три основные категории: растровая, векторная и трехмерная графика. Среди двумерной графики особым образом выделяются пиксельная и фрактальная графика. Отдельного рассмотрения требуют также трехмерная, CGI- и инфографика.

Пиксельная графика

Термин "пиксельная графика" (от англ. pixel ) означает форму цифрового изображения, созданного на компьютере с помощью растрового графического редактора, где изображение редактируется на уровне пикселей (точек), а разрешение изображения настолько мало, что отдельные пиксели четко видны.

Распространено заблуждение, что любой рисунок, сделанный с использованием растровых редакторов, – пиксельная графика. Это неверно, пиксельное изображение отличается от обычного растрового технологией – ручным редактированием рисунка пиксель за пикселем. Поэтому пиксельный рисунок отличается небольшими размерами, ограниченной цветовой палитрой и (как правило) отсутствием сглаживания.

Пиксельная графика использует лишь простейшие инструменты растровых графических редакторов, такие как Карандаш, Прямая (линия) или Заливка (заполнение цветом). Пиксельная графика напоминает мозаику и вышивку крестиком или бисером – так как рисунок складывается из небольших цветных элементов, аналогичных пикселям современных мониторов.

Фрактальная графика

Фрактал – объект, формирующийся из нерегулярных отдельных частей, которые подобны целому объекту. Поскольку более детальное описание элементов меньшего масштаба происходит по простому алгоритму, описать такой объект можно всего лишь несколькими математическими уравнениями.

Рис. 8.5.

Фрактальная графика незаменима при создании искусственных гор, облаков, морских волн. Благодаря фракталам легко изображаются сложные объекты, образы которых похожи на природные. Фракталы позволяют описывать целые классы изображений, для детального описания которых требуется относительно мало памяти (рис. 8.5). С другой стороны, фракталы слабо применимы к изображениям вне этих классов.

Трехмерная графика

Трехмерная графика (3D – от англ. 3 Dimensions – три измерения) – три измерения изображения) – раздел компьютерной графики, совокупность приемов и инструментов (как программных, так и аппаратных), предназначенных для изображения объемных объектов (рис. 8.6).

Рис. 8.6.

Трехмерное изображение на плоскости отличается от двумерного тем, что включает построение геометрической проекции трехмерной модели сцены на плоскость (например, экран компьютера) с помощью специализированных программ (однако с созданием и внедрением 3D -дисплеев и 3D -принтеров трехмерная графика не обязательно включает в себя проецирование на плоскость). При этом модель может как соответствовать объектам из реального мира (автомобили, здания, ураган, астероид), так и быть полностью абстрактной (проекция четырехмерного фрактала).

3D-моделирование – это процесс создания трехмерной модели объекта. Задача 3D -моделирования – разработать объемный образ желаемого объекта. С помощью трехмерной графики можно и создать точную копию конкретного предмета, и разработать новое, даже нереальное представление никогда не существовавшего объекта.

Трехмерная графика оперирует с объектами в трехмерном пространстве. Обычно результаты представляют собой плоскую картинку, проекцию. Трехмерная компьютерная графика широко используется на телевидении, в кинематографе, в компьютерных играх и оформлении полиграфической продукции.

Трехмерная графика активно применяется для создания изображений на плоскости экрана или печатаемого листа в науке и промышленности (например, в системах автоматизации проектных работ (САПР)); для создания твердотельных элементов: зданий, деталей машин, механизмов), архитектурной визуализации (сюда относится и так называемая "виртуальная археология"), в современных системах медицинской визуализации.

Трехмерная графика обычно имеет дело с виртуальным, воображаемым трехмерным пространством, которое отображается на плоской, двумерной поверхности дисплея или листа бумаги. Любое изображение на мониторе в силу плоскости последнего, становится растровым, так как монитор – это матрица, он состоит из столбцов и строк. Трехмерная графика существует лишь в нашем воображении – то, что мы видим на мониторе – это проекция трехмерной фигуры, а уже создаем пространство мы сами. Таким образом, визуализация графики бывает только растровая и векторная, а способ визуализации – это только растр (набор пикселей), от количества этих пикселей зависит способ задания изображения.

В настоящее время известно несколько способов отображения трехмерной информации в объемном виде, хотя большинство из них представляет объемные характеристики весьма условно, поскольку работают со стереоизображением. Из этой области можно отметить стереоочки, виртуальные шлемы, 3D -дисплеи, способные демонстрировать трехмерное изображение.

-графика

Термином "CGI-графика" (англ. computergenerated imagery обозначают изображения, сгенерированные компьютером) обозначают неподвижные и движущиеся изображения, сгенерированные при помощи трехмерной компьютерной графики и использующиеся в изобразительном искусстве, печати, кинематографических спецэффектах, на телевидении и в симуляторах. В компьютерных играх обычно используется компьютерная графика в реальном времени, но периодически добавляются и внутриигровые видео, основанные на CGI.

Созданием движущихся изображений занимается компьютерная анимация, представляющая собой более узкую область графики CGI, применимую в том числе в кинематографе, где позволяет создавать эффекты, которые невозможно получить при помощи традиционного грима и аниматроники . Компьютерная анимация может заменить работу каскадеров и статистов, а также декорации.

Инфографика

Термином "инфографика" (от лат. informatio – осведомление, разъяснение, изложение; и др.-греч. graphike – письменный, от grapho – пишу) обозначают графический способ подачи информации, данных и знаний.

Спектр применения инфографики огромен – география, журналистика, образование, статистика, технические тексты. Она помогает не только организовать большие объемы информации, но и более наглядно показать соотношение предметов и фактов во времени и пространстве, а также продемонстрировать тенденции.

Инфографикой можно назвать любое сочетание текста и графики, созданное с намерением изложить ту или иную историю, донести тот или иной факт. Инфографика работает там, где нужно показать устройство и алгоритм работы чего-либо, соотношение предметов и фактов во времени и пространстве, продемонстрировать тенденцию, показать, как что выглядит, организовать большие объемы информации.

Инфографика – это визуальное представление информации. Используется там, где сложную информацию нужно представить быстро и четко.

  • Аниматроника – методика, применяемая в кинематографии, мультипликации, компьютерном моделировании для создания спецэффектов подвижных искусственных частей тела человека, животного или других объектов.

Все мы каждый день наблюдаем огромное количество рекламы, фильмов, мультфильмов и другой медиапродукции нашего современного мира. Мира технологий, без которых, кажется, не смогут уже прожить миллионы людей во всем мире.

Почти все люди знают, что все большая часть современного искусства создано при помощи компьютерной графики. Но лишь немногие из них понимают, чем отличается растровая графика от векторной, а фрактальная от 3d-графики. Эти отличия мы и разберем сегодня. А более подробное описание большинства программ и их стоимости можно найти на сайте https://www.architect-design.ru . Итак, поехали разбираться.

Можно сказать, что этот вид (тип) компьютерной графики самый распространенный. Залежи кадров с отпусков и миллионы фотографий милейших котят в интернете - все это растровая графика.

Строятся изображения растрового типа по простому принципу, который похож, например, на вышивку крестом. Определенный цвет помещается в назначенную ему ячейку. Если сильно приблизить растровую картинку, то можно увидеть как она разбивается на одинаковые по размеру квадратики, напоминая мозаику. Такое увеличение заметно ухудшает её качество, так как картинка при сильном увеличении делится на видимые квадраты. Этот эффект называется пикселизация, а каждый такой квадратик - точкой, или пикселем.

Растровая графика

Слово «пиксель» произошло от сокращения «Picture element». Пиксель не делится на более мелкие части, имеет однородный цвет и является мельчайшим элементом растрового изображения. Размер точки, пикселя, из множества которых стоит изображение, примерно 0,05 миллиметра.

К достоинствам растровой графики можно отнести ее высокую реалистичность. Минусом может являться то, что если картинка слишком маленькая, то увеличить ее без потери качества просто не получится. Самая популярная программа создания и редактирования растровой графики — Adobe Photoshop.

Векторная графика

Если в растровой графике точка - это основной элемент, то в векторе таковым можно назвать линию. Конечно, в растре тоже есть линии, но их самих можно разбить на более мелкие детали, пиксели, а вот упростить векторную линию уже нельзя.

Линии пересекаются, изгибаются, замыкаются между собой образуют формы. Например, три замкнутые под углом прямые образуют примитив - треугольник. Этот треугольник можно залить определенным цветом или текстурой, растянуть одну из его сторон или изогнуть. Но векторная графика это не только геометрические примитивы: изображение может состоять из причудливых клякс, линий разной толщины и любых других форм. Чем больше таких форм использовано, тем лучше выглядит векторная картинка. Чем то это похоже на аппликацию из бумаги, которая состоит из комбинаций форм, вырезанных из разных листов цветной бумаги.

Векторная графика

Главное преимущество такого вида графики в том, что качество картинки не меняется при масштабировании, да и размер такого файла меньше, ведь каждый объект, используемый в создании изображения, программа воспринимает как формулу. Такая формула занимает всего одну ячейку информации.

Допустим, линия обозначается программой буквой «Л» и записывается в одну клеточку тетрадки. А если линия приобретает красный цвет, то к букве «Л» еще добавляется буква «К», как обозначение цвета, но все это также вмещается в одну клетку памяти.

Такая система в чем-то упрощают работу с изображением при редактировании. Ведь каждый объект можно изгибать, увеличивать и масштабировать, не затрагивая другие . Минус скорее один: ваш питомец, нарисованный в векторе, скорее будет похож на героя комиксов, чем на живого кота. Векторная графика создается чаще в программах: Corel Draw, Adobe Illustrator.

Фрактальная графика

С латинского языка слово «фрактал» можно перевести как «состоящий из частей, фрагментов». Для создания фрактального изображения используется объект, бесконечно умноженный и повторяющийся, части которого снова и снова делятся, а их части... в общем, вы поняли. Это напоминает снежинку или дерево, как если бы каждая его ветка делилась на две, а те, в свою очередь, еще на две и так далее.

Характер такого деления и умножения определяется заданной математической формулой. Модификаций себе подобных объектов великое множество, но все они закладывается в одно-единственное математическое исчисление, изменяя которое можно получать все новые вариации фрактального изображения. Apophysis — это одна и программ, генерирующих фрактальные изображения.

Фрактальная графика

3D графика

Трехмерное изображение, созданное на компьютере, может быть максимально реалистичным. Его можно вращать, рассматривая со всех сторон, приближать или отдалять. Таким образом, 3D объекты схожи с объектами реальной жизни, так имеют объем, текстуру и существуют как бы в трех измерениях, но только на экране.

3D графика может быть простой, как например созданный в объеме квадрат, или сложной, наполненной деталями. Объектам можно придать эффект движения, перемещения в пространстве или взаимодействия с предметами, если так пожелает тот, кто их создал. 3D графику мы видим в видео играх и мультиках - именно там она оживает и дает оценить ее объемы и реалистичность. Самые популярные программы для создания 3d-графики: 3ds Max, Maya, Cinema 4D, Blender. Именно программе 3ds Max и посвящен сайт, на котором вы сейчас находитесь.

3ds max — программа создания 3d-графики

Понравилось? Лайкни нас на Facebook