Факторы определяющие опасность поражения эл током. Факторы, определяющие опасность поражения электрическим током. Факторы, определяющие исход поражения электрическим током

1. Величина тока – главный фактор, характеризующий степень тяжести электрической травмы. В Приложении М приведены сведения о влиянии на организм человека токов разной величины. Для характеристики такого влияния используют пороговые величины:

- порог чувствительности – минимальная сила тока, которую ощущает человек. Он составляет 0,6...1,5 мА для переменного (частота 50 Гц) и 5...7 мА для постоянного тока. Такой ток безопасен для человека;

- пороговый неотпускающий ток – минимальная сила тока, при которой человек не может самостоятельно оторвать руки от токоведущих частей. По величине такой ток не опасен для человека, однако при длительном воздействии может привести к тяжелым последствиям и даже смерти. При постоянном токе человек может самостоятельно оторвать руку от проводника при любой силе тока, однако в момент отрыва возникают болезненные сокращения мышц, аналогичные возникающим при переменном токе. Человек способен выдержать боль при отрыве от токоведущих частей при силе тока не более 50 – 80 мА.

- пороговый фибриляционный ток – минимальная сила тока, при которой происходит фибрилляция сердечной деятельности пострадавшего. Вызывает смерть потерпевшего, если время прохождения тока превышает 1 с, составляет 100 мА для переменного тока при 50 Гц и 300 мА для постоянного тока. Ток силой более 5 А вызывает немедленную остановку сердца, минуя состояние фибрилляции.

- предельно допустимый ток – максимальная сила тока, которая не вызывает электрической травмы при любой продолжительности действия.

2. Род и частота тока – сопротивление тела человека имеет емкостную составляющую, поэтому изменение частоты приложенного напряжения приводит к изменению полного сопротивления тела и увеличение силы проходящего тока.

Увеличение частоты тока от 0 до 200 Гц приводит к увеличению опасности поражения. При частоте тока 100 кГц и выше существует только опасность ожогов. Дальнейшее повышение частоты снижает опасность поражения переменным током, который вообще исчезает при частоте 450 кГц. При напряжении до 500 В постоянный ток безопаснее (в 4-5 раз), выше 500 В – постоянный ток более опасен. Наиболее опасным для человека является переменный ток частоты 50 Гц при напряжении 220 В. Ориентировочные значения предельных величин для такого тока приведены в табл. 6.1

Таблица 6.1. Пороговые значения переменного тока частоты 50 Гц

3. Электрическое сопротивление тела человека определяется сопротивлением рогового слоя кожи и зависит от приложенного напряжения. Сухая неповрежденная кожа имеет сопротивление 500...500 000 Ом. Влажная загрязненная кожа имеет значительно меньшее сопротивление, что обусловлено проходом тока через потовые железы и подкожную область. Сопротивление тела человека переменному току частоты 50 Гц принимают равным 1 000 Ом.

Живой организм состоит из различных клеток и растворов солей, что обусловливает различное электрическое сопротивление разных частей тела. Кроме того, сопротивление кожи в разных местах человеческого организма сильно отличается, поэтому тяжесть электрической травмы не последним образом зависит от места поражения. Фактор внимания повышает сопротивление тела человека и уменьшает вероятность поражения. Известно, что около 85% электрическим травм возникают в конце рабочей смены из-за ослабления внимания работников.

4. Длительность действия тока – при прохождении тока резко уменьшается сопротивление кожи, что приводит к более тяжелым электрическим травмам: через 30 с сопротивление тела уменьшается на 25%, а через 90 с – на 70%. В табл. 6.2 приведена зависимость предельно допустимой силы тока от продолжительности его действия.

Таблица 6.2 – Предельно допустимые значения силы тока (~50 Гц)

Кроме этого, в организме накапливаются последствия воздействия тока и повышается вероятность совпадения момента прохождения тока с уязвимой Т-фазой сердечного цикла (с периодом в 0,15 – 0,20 с, в течение которого заканчивается сокращение желудочков сердца и они переходят в расслабленное состояние). Вот почему при оказании помощи во-первых, нужно прекратить действие тока.

5. Направление прохождения тока – если на пути тока оказываются жизненно важные органы (сердце, легкие, головной мозг), то опасность поражения очень велика. При других направлениях прохождения тока тяжесть поражения значительно уменьшается. На практике встречается 15 возможных путей прохождения тока в теле человека, самыми распространенными из них являются направления «рука – рука» (40% случаев) и «правая рука – ноги» (20% случаев). Наиболее опасные пути – «голова – руки» и «голова – ноги», которые на практике реализуются достаточно редко. Наименее опасным является путь «нога – нога» (нижняя петля), который возникает при воздействии на человека напряжения шага.

6. Схема включения в электрическую цепь – человек может прикоснуться одновременно к двум фазным проводам сети переменного тока (двухфазное прикосновение), к одному фазному проводу (однофазное прикосновение), приблизиться на опасное расстояние к неизолированным токоведущим частям, коснуться корпуса электрического оборудования, оказавшегося под напряжением или войти в зону действия шагового напряжения.

5. Индивидуальные свойства человека – физически здоровые люди легче переносят электрические удары, чем больные и слабые. Наименее устойчивыми к действию электрического тока являются люди с нервными заболеваниями, заболеваниями кожи, сердечно-сосудистой системы, органов внутренней секреции, легких. Физическое и эмоциональное напряжение повышает опасность поражения человека электрическим током.

Степень поражения человека при прохождении через него электрического тока зависит от силы электрического тока, рода и значения напряжения, частоты электрического тока, пути прохождения тока через организм человека, продолжительности действия, условий внешней среды, электрического сопротивления тела человека.

2.1. Сила тока

Сила тока является основным поражающим фактором. Установлены следующие пороговые значения силы тока:

1. ток ощутимый составляет 0,5–1,5 мА для переменного (f = 50 Гц) и 5–7 мА для постоянного тока, при этом характерно легкое покалывание, слабый зуд при переменном токе и ощущение нагрева кожи на участке, касающемся токопроводящей части, при постоянном токе;

2. ток неотпускающий составляет 10 – 15 мА для переменного и 50 – 80 мА для постоянного тока, при этом характерна едва переносимая боль с непроизвольным сокращением мышц предплечья, невозможность разжать руку;

3. ток фибрилляционный (смертельный) составляет 80–100 мА и более для переменного и 300 мА для постоянного тока, при этом возникает фибрилляция сердца, т.е. хаотические, быстрые и разновременные сокращения волокон сердечной мышцы (фибрилл), при которых сердце перестает работать как насос и не в состоянии обеспечить движение крови по кровеносным сосудам, что влечет за собой недостаток кислорода, это, в свою очередь, приводит к прекращению дыхания, вследствие чего наступает смерть.

2.2.Продолжительность воздействия электрического тока

Анализ опытов над животными показывает прямую зависимость длительности прохождения электрического тока через организм на исход поражения. Такая зависимость объясняется тем, что с увеличением продолжительности воздействия тока на живую ткань возрастает значение тока, накапливаются последствия воздействия электрического тока и, наконец, повышается вероятность совпадения моментов прохождения тока через сердце с уязвимой фазой Т сердечного цикла (кардиоцикла).

Возрастание значения тока обусловлено уменьшением сопротивления организма. Последствия воздействия тока на живой организм выражаются в нарушении функций центральной нервной системы, изменении состава крови, местном разрушении тканей под влиянием выделяющегося тепла, нарушении работы сердца и легких.

Каждый цикл сердечной деятельности состоит из двух периодов: диастолы , когда желудочки сердца, находясь в расслабленном состоянии, заполняются кровью, и систолы , когда сердце, сокращаясь, выталкивает кровь в артериальные сосуды. Наиболее уязвимым сердце становится в фазе Т (0,2 с), когда заканчивается сокращение желудочков в диастоле и они переходят в расслабленное состояние. Весь период кардиоцикла составляет 0,75 – 1,0 с. Поэтому если во время фазы Т через сердце проходит электрический ток, то, как правило, возникает фибрилляция сердца.

Согласно ГОСТ 12.1.038–82 в зависимости от длительности протекания электрического тока через тело человека установлены предельно допустимые значения силы тока для переменного тока частотой 50 Гц: 500 мА в течение 0,1 с и 50 мА в течение 1 с.

Опасность поражения человека электрическим током определяется факторами электрического (напряжение, сила, род и частота тока, электрическое сопротивление человека) и неэлектрического характера (индивидуальные особенности человека, продолжительность действия тока и его путь через человека), а также состоянием окружающей среды.
Факторы электрического характера. Сила тока является основным фактором, обусловливающим степень поражения человека, и в зависимости от этого установлены категории воздействия: пороговый ощутимый ток, пороговый ноотпускающий ток и пороговый фибрнлляционный ток.
Электрический ток наименьшей силы, вызывающий ощутимые человеком раздражения, называется пороговым ощутимым током. Человек начинает ощущать воздействие переменного тока частотой 50 Гц, силой в среднем около 1,1 мА, а постоянного тока около 6 мА. Оно воспринимается как слабый зуд и легкое покалывание при переменном токе или нагревание кожи при постоянном.
Пороговый ощутимый ток, поражая человека, может явиться косвенной причиной несчастного случая, вызвав непроизвольные ошибочные действия, усугубляющие существующую ситуацию (работа на высоте, вблизи токоведущих, движущихся частей и т. д.).
Увеличение сверхпорогового ощутимого тока вызывает у человека судороги мышц и болезненные ощущения. Так, при переменном токе 10—15 мА, а постоянном 50—80 мА человек не в состоянии преодолеть судороги мышц, разжать руку, которой касается токоведущей части, отбросить провод и оказывается как бы прикованным к токоведущей части. Такой ток называется пороговым неотпускающим.
Превышающий его ток усиливает судорожные сокращения мышц и болевые ощущения, распространяет их на обширную область тела. Это затрудняет дыхательные движения грудной клетки, вызывает сужение кровеносных сосудов, что приводит к повышению артериального давления и повышению нагрузки на сердце. Переменный ток 80—100 мА, а постоянный 300 мА непосредственно влияют на сердечную мышцу, и через 1—3 с с начала его воздействия возникает фибрилляция сердца. В результате прекращается кровообращение и наступает смерть. Этот ток называется фибрилляционным, а наименьшее его значение — пороговымфибрилляционным током. Переменный ток силой 100 мА и более мгновенно вызывает смерть от паралича сердца. Чем больше значение тока, проходящего через человека, тем больше опасность поражения, но эта зависимость неоднозначна, так как опасность пораження зависит также от ряда других факторов, в том числе неэлектрического характера.
Род и частота тока. При напряжениях до 250—300 В постоянный и переменный токи одинаковой силы оказывают разное воздействие на человека. Это различие исчезает при большем напряжении.
Наиболее неблагоприятным является переменный ток промышленной частотой 20—100 Гц. При увеличении или уменьшении за этими пределами частот значения неотпускающего тока возрастают, и при частоте, равной нулю (постоянный ток), они становятся больше примерно в 3 раза.
Сопротивление цепи человека электрическому току. Электрическое сопротивление цепи человека (Rч) эквивалентно суммарному сопротивлению нескольких включенных последовательно элементов: тела человека r т.ч, одежды r од (при прикосновении участком тела, защищенным одеждой), обуви r об и опорной поверхности

R ч =r т.ч. +r од +r об +r оп

Из равенства можно сделать вывод: огромное значение имеет изолирующая способность полов и обуви для обеспечения безопасности людей от поражения током.
Индивидуальные способности сопротивления тела человека. Электрическое сопротивление тела человека является неотъемлемой составляющей при его включении в электрическую цепь. Наибольшим электрическим сопротивлением обладает кожа, и особенно ее верхний роговой слой, лишенный кровеносных сосудов. Сопротивление кожи зависит от ее состояния, плотности и площади контактов, величины приложенного напряжения, силы и времени воздействия тока. Наибольшее сопротивление оказывает чистая, сухая, неповрежденная кожа. Увеличение площади и плотности контактов с токоведущими частями снижает ее сопротивление. С увеличением приложенного напряжения сопротивление кожи уменьшается в результате пробоя верхнего слоя. Увеличение силы тока или времени его протекания также снижает электрическое сопротивление кожи вследствие нагрева ее верхнего слоя.
Сопротивление внутренних органов человека является также переменной величиной, зависящей от физиологических факторов, состояния здоровья, психического состояния. В связи с этим к обслуживанию электроустановок допускаются лица, прошедшие специальный медицинский осмотр, не имеющие кожных заболеваний, заболеваний сердечно-сосудистой, центральной и периферической нервных систем и других болезней. При проведении разных расчетов но обеспечению электробезопасности условно принимают сопротивление тела человека равным 1000 Ом.
Продолжительность действия тока. Увеличение длительности воздействия тока на человека усугубляет тяжесть поражения из-за снижения сопротивления тела за счет увлажнения кожи потом и соответствующего увеличения проходящего через него тока, истощения защитных сил организма, противостоящих воздействию электрического тока. Между допустимыми для человека величинами напряжений прикосновения и силы токов существует определенная зависимость, соблюдение которой обеспечивает электробезопасность. Напряжение прикосновения — это напряжение между двумя точками цепи тока, которых одновременно касается человек.
Предельно допустимые уровни напряжений прикосновения и силы токов выше отпускающих установлены для путей тока от одной руки к другой и от руки к ногам, ГОСТ 12.1.038—82 «ССБТ. Электробезопасность. Предельно допустимые уровни напряжений прикосновения», которые для нормального (неаварийного) режима работы электроустановок при продолжительности воздействия не более 10 мин в сутки не должны превышать следующих значений: при переменном (50 Гц) и постоянном токе (соответственно напряжением 2 и 8 В, сила тока соответственно 0,3 МА).
При работе на пищевых предприятиях в условиях высоки л температур (>250С) и относительной влажности воздуха (>75 %) указанные значения напряжения прикосновения и токи должны быть уменьшены в 3 раза. При аварийном режиме, т. е. при работе неисправной электроустановки, угрожающей электротравмой, их значения указаны в табл. 4.
Из данных табл. 4 следует, что при переменном токе силой С мА и постоянном 15 мА человек самостоятельно может освободиться от токоведущих частей в течение периода продолжительностью более 1 с. Эти токи считаются длительно допустимыми, если отсутствуют обстоятельства, усугубляющие опасность.
Таблица 4

Норми- руемая вели- чина

Предельно допустимые уровни, не более, при длительном воздействии тока

Переменный (50 Гц)

Постоянный

Путь тока через человека существенно влияет на исход поражения, опасность которого особенно велика, если он проходит через жизненно важные органы: сердце, легкие, головной мозг.
В теле человека ток проходит не но кратчайшему расстоянию между электродами, а движется главным образом вдоль потоков тканевой жидкости, кровеносных и лимфатических сосудов и оболочек нервных стволов, обладающих наибольшей электропроводностью.
Пути тока в теле человека называют петлями тока. Для электротравм с тяжелым или смертельным исходом наиболее характерны следующие петли тока: рука — рука (40% случаев), правая рука —ноги (20%), левая рука—ноги (17 %), нога —нога (8%).
Многие факторы окружающей производственной среды существенно влияют на электробезопасность. Во влажных помещениях с высокой температурой условия для обеспечения элсктробезопасности неблагоприятны, так как при этом терморегуляция организма человека осуществляется в основном с помощью потовыделения, а это приводит к уменьшению сопротивления тела человека. Заземленные металлические токопроводящие конструкции способствуют повышению опасности поражения током из-за того, что человек практически постоянно связан с одним из полюсов (землей) электроустановки. Токопроводящая пыль повышает возможность случайного электрического контакта человека с токоведущими частями и землей.
В зависимости от влияния окружающей среды «Правилами устройства электроустановок» (ПУЭ) производственные помещения по степени опасности поражения человека электрическим током классифицированы.
Помещения с повышенной опасностью, характеризирующиеся наличием в них одного из следующих признаков:

  • сырость (относительная влажность воздуха длительно превышает 75 %);
  • токопроводящая пыль, которая может оседать на проводах, проникать внутрь машин, аппаратов и т. п.;
  • токопроводящие полы (металлические, земляные, железобетонные, кирпичные и т. п.);
  • высокая температура воздуха (постоянно или периодически превышающая 35 °С, например, помещения с сушилками, котельные и т. п.);
  • возможность одновременного прикосновения человека к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т. п., с одной стороны, и к металлическим корпусам электрооборудования — с другой. Примером помещений с повышенной опасностью могут быть в пивоварении и безалкогольном производстве — бродильное отделение, отделения приготовления сухих напитков, цехи готовой продукции; сушильные и элеваторные отделения крохмало-паточного производства; тестоприготовительные отделения хлебозаводов.

Особо опасные помещения, характеризующиеся наличием одного из следующих признаков:

  • особая сырость (относительная влажность воздуха близка к 100%, потолок, стены, пол и предметы в помещении покрыты влагой);
  • химически активная или органическая среда (агрессивные пары, газы, жидкости, образующие отложения или плесень, разрушающие изоляцию и токоведущис части электрооборудования);
  • одновременно два или более признака помещений повышенной опасности. К помещениям этого класса, например, относятся бутылкомоечные отделения, цехи розлива купажа, варки сиропа на пивобезалкогольных производствах; сиропные, варочные, сепараторные отделения крахмало-паточного производства.

Помещениями без повышенной опасности являются такие, в которых отсутствуют признаки указанных выше помещений.
Территории размещения наружных электроустановок приравниваются к особо опасным помещениям.

Полезная информация:

Характер и последствия воздействия на человека электрического тока зависят от следующих факторов:

Электрического сопротивления тела человека;

Величины действующего на человека напряжения и силы тока;

Продолжительности воздействия электрического тока;

Рода и частоты электрического тока;

Пути тока через человека;

Условия внешней среды и факторы трудового процесса.

Электрическое сопротивление тела человека. Тело человека является проводником электрического тока, неоднородным по электрическому сопротивлению. Наибольшее сопротивление электрическому току оказывает кожный покров, поэтому сопротивление тела человека определяется главным образом состоянием кожного покрова.

Кожный покров состоит из двух основных слоёв: наружного – эпидермиса и внутреннего – дермы. Эпидермис также имеет слоистую структуру, в которой самый верхний слой называется роговым. Роговой слой в сухом и незагрязнённом состоянии можно рассматривать как диэлектрик – его удельное электрическое сопротивление достигает 10 5 …10 6 Ом·м, т.е. в тысячи раз превышает сопротивление других слоев кожного покрова и внутренних тканей организма. Сопротивление внутреннего слоя кожного покрова (дермы) незначительно; оно во много раз меньше сопротивления рогового слоя. Сопротивление тела человека при сухом, чистом и неповреждённом кожном покрове колеблется от 3 до 100 кОм и более, а сопротивление внутренних органов составляет всего 300…500 Ом.

В качестве расчётной величины при действии переменного тока промышленной частоты (50 Гц) применяют активное сопротивление тела человека равное 1000 Ом. В действительных условиях сопротивление тела человека не является постоянной величиной. Оно зависит от ряда факторов, в том числе: от состояния кожного покрова и окружающей среды; параметров электрической цепи.

Повреждение рогового слоя кожного покрова (порезы, царапины, ссадины и т.п.) снижают сопротивление тела до 500…700 Ом, что увеличивает опасность поражения электрическим током. Такое же влияние оказывают: увлажнение кожного покрова (например, пόтом); загрязнение вредными веществами (например, пыль, окалина и т.п. вещества).

На сопротивление тела человека оказывает влияние площадь контакта с источником тока, чем она больше, тем меньше сопротивление. До десятков и даже единиц Ом может уменьшаться сопротивление кожного покрова в местах расположения акупунктурных точек на теле человека.

Величина тока и напряжения. Основным фактором, обусловливающим исход поражения электрическим током, является сила тока, проходящего через тело человека. Напряжение, приложенное к телу человека, также влияет на исход поражения, но лишь постольку, поскольку оно определяет величину тока, проходящего через человека.


В практике электротравматизма принято выделять следующие пороги действия электрического тока:

– пороговый электрический ток – величина тока, вызывающая в организме человека едва ощутимые раздражения (небольшое повышение температуры в зоне контакта систочником элекатроэнергии, неуёмное дрожание пальцев рук, повышенное потоотделение и т.п. факторы). Эти ощущения вызывает сила тока: 0,6…1,5 мА (для переменного тока частотой 50 Гц); 5…7 мА (для постоянного тока);

– неотпускающий ток, – величина электрического тока, вызывающая непреодолимые судорожные сокращения мышц рук, в которых зажат проводник. Величина неотпускающего тока при времени действия 1…3 с составляет 10…15 мА для переменного и 50…60 мА для постоянного токов. При такой силе тока человек уже не может самостоятельно разжать руки, в которых зажаты токоведущие части электрооборудования;

– фибрилляционный (смертельный) ток – величина электрического тока, вызывающая фибрилляцию сердца (разновременное и разрозненное сокращение отдельных волокон сердечной мышцы, неспособное поддерживать её самостоятельную работу). При длительности действия 1…3 с по пути рука-рука, рука-ноги величина этого тока составляет ~ 100 мА для переменного и ~ 500 мА для постоянного тока. В то же время сила тока величиной 5 А и более фибрилляцию сердечной мышцы не вызывает – происходит мгновенная остановка сердца и паралич мышц грудной клетки.

Сила пороговых токов считается длительно безопасной величиной для человека.

Безопасных напряжений среди тех величин, которые используются в практической деятельности человека, не существует, поскольку сила тока при любом малом из указанных напряжений может превысить силу пороговых токов при аномально малых сопротивлениях тела человека. Например, контакт полюсов гальванического элемента (U = 1,5 В) с акупунктурными точками человека (R ~ 10 Ом) может вызвать протекание постоянного электрического тока между ними силой 1,5 А, что даже при кратковременном действии превышает смертельную величину в 3 раза.

Продолжительность воздействия электрического тока. С повышением времени протекания тока через человека повышается вероятность прохождения его через сердце в момент наиболее уязвимой для всего кардиоцикла фазы Т (окончание сокращения желудочков и перехода их в расслабленное состояние ~ 0,2 с). Кроме того, с увеличением времени протекания электрического тока через человека усугубляются все негативные явления как местного, так и общего действия.

Род тока и частота переменного электрического тока. Постоянный ток примерно в 4…5 раз безопаснее переменного промышленной частоты (50 Гц). Объяснить этот факт можно сложной структурой сопротивления тела человека. Сопротивление человеческого тела включает в себя активную (омическую) и ёмкостную составляющие, причём последняя возникает при включении человека в электрическую цепь (Рис. 1).

Рис. 1. Упрощённая электрическая схема замещения сопротивления тела человека

Ra – активная (омическая) составляющая; Rс – ёмкостная составляющая

Наличие ёмкостной составляющей обусловлено тем, что между электродом, касающимся тела человека (корпус электрооборудования, провода электросети и т.п.), и землёй (пол, площадка для обслуживания оборудования и т.п.), на которой стоит человек, расположен роговой слой кожного покрова – практически диэлектрик, что образует конденсаторную систему (электрическую ёмкость). Если через человека протекает постоянный ток, то он воздействует только на активную составляющую общего сопротивления (Ra), так как электрическая ёмкость для постоянного тока является разрывом цепи. Переменный ток протекает и через активную и через ёмкостную составляющие общего сопротивления человека (Ra и Rс), что, при прочих равных условиях, приводит к бόльшему отрицательному воздействию на организм.

С повышением частоты переменного тока (относительно 50 Гц) его общее негативное действие снижается, сравниваясь на частоте ~ 1000 Гц с действием постоянного тока. На частоте ~ 50 Гц и выше переменный ток общего действия на человека практически не оказывает. Это явление можно объяснить тем, что наибольшая плотность зарядов (ионов, электронов) в плоскости поперечного сечения проводника при протекании переменного тока высокой частоты наблюдается на периферии этого сечения; если в качестве проводника рассматривать человека, то на периферии поперечного сечения туловища и конечностей мы увидим кожный покров, обладающий сопротивлением, близким к таковому у диэлектриков. Местное действие переменного тока высокой частоты при этом сохраняется.

Это положение справедливо лишь до напряжений 250…300 В. При более высоких напряжениях постоянный ток более опасен, чем переменный с частотой 50 Гц.

Путь тока через тело человека играет существенную роль в исходе поражения, т.к. электрический ток может пройти через жизненно важные органы: сердце, лёгкие, головной мозг и др. Влияние пути тока на исход поражения определяется также величиной сопротивления кожного покрова человека на различных участках его тела.

Количество возможных путей тока через тело человека, называемых петлями тока, достаточно много. Чаще всего встречаются ток протекает по петлям: рука-рука; рука-ноги; нога-нога; голова-руки; голова-ноги. Наиболее опасными являются петли: голова-руки и голова-ноги, но они возникают относительно редко.

Условия внешней среды и факторы трудового процесса оказывают существенное влияние на величину сопротивления кожного покрова и в целом тела человека. Так, например, повышенная температура (~ 30 ° С и выше) и относительная влажность воздуха (~ 70 % и выше) способствуют повышенному потоотделению, а, следовательно, резкому уменьшению активного сопротивления тела человека. Интенсивная физическая работа приводит к аналогичному результату.

Исход поражения электрическим током зависит от следующих факторов: электрического сопротивления тела человека, силы протекающего через тело тока, времени воздействия тока, пути протекания тока, частоты и рода тока, индивидуальных особенностей организма человека, условий внешней (окружающей) среды и других факторов.

Величина тока, протекающего через тело человека, зависит от напряжения прикосновения U и сопротивления тела человека R.

Сопротивление тела человека, величина нелинейная, зависящая от многих факторов: сопротивления кожи и ее состояния; от величины тока и приложенного напряжения; от длительности протекания тока.

Наибольшим сопротивлением обладает верхний роговой слой кожи. В сухом и незагрязненном состоянии его можно рассматривать как диэлектрик: удельное сопротивление рогового слоя достигает 10 5 --10 6 Ом * м, что в тысячи раз превышает сопротивление других слоев кожи.

Сопротивление тела человека при сухой, чистой и неповрежденной коже колеблется от 1000 до 100 000 Ом, а сопротивление слоев тела составляет всего 500--700 Ом.

В качестве расчетной величины при переменном токе промышленной частоты сопротивление тела человека (R 4 ) принимается равным 1000 Ом. В реальных условиях сопротивление тела человека -- величина непостоянная и зависит от ряда факторов.

С ростом тока, проходящего через тело человека, его сопротивление уменьшается, так как при этом увеличивается нагрев кожи и растет потоотделение. По этой же причине снижается R 4 с увеличением длительности протекания тока. Чем выше приложенное напряжение, тем больше ток человека / ч, тем быстрее снижается сопротивление кожи человека.

С ростом напряжения сопротивление кожи уменьшается в десятки раз, а следовательно, уменьшается и сопротивление тела в целом; оно приближается к сопротивлению внутренних тканей тела, т. е. к своему наименьшему значению (300--500 Ом). Это можно объяснить электрическим пробоем слоя кожи, который происходит при напряжении 50--200 В.

Загрязнение кожи различными веществами, в особенности хорошо проводящими электрический ток (металлическая или угольная пыль, окалина и т. п.), снижает ее сопротивление.

Основной поражающий фактор электрического тока -- сила тока, проходящего через тело человека. Небольшие токи вызывают лишь неприятные ощущения. При токах, больших 10--15 мА, человек не способен самостоятельно освободиться от токоведущих частей и действие тока становится длительным (неотпускающий ток). При токе, равном 20--25 мА (50 Гц), человек начинает испытывать затруднение дыхания, которое усиливается с ростом тока. При действии такого тока в течение нескольких минут наступает удушье. При длительном воздействии токов величиной несколько десятков миллиампер и времени действия 15--20 с могут наступить паралич дыхания и смерть. Токи величиной 50--80 мА приводят к фибрилляции сердца, которая заключается в беспорядочном сокращении и расслаблении мышечных волокон сердца, в результате чего прекращается кровообращение и сердце останавливается. Действие тока величиной 100 мА в течение 2--3 с приводит к смерти (смертельный ток).

При невысоких напряжениях (до 100 В) постоянный ток примерно в 3--4 раза менее опасен, чем переменный частотой 50 Гц; при напряжениях 400--500 В опасность их сравнивается, а при более высоких напряжениях постоянный ток даже опаснее переменного.

Наиболее опасен ток промышленной частоты (20--100 Гц). Снижение опасности действия тока на живой организм заметно сказывается при частоте 1000 Гц и выше. Токи высокой частоты, начиная от сотен килогерц, вызывают только ожоги, не поражая внутренних органов. Это объясняется тем, что такие токи не способны вызывать возбуждение нервных и мышечных тканей.

Существенную роль в исходе поражения играет путь прохождения электрического тока через тело человека. Опасность поражения электрическим током сильно увеличивается при прохождении его через жизненно важные органы: сердце, легкие, головной мозг. Однако рефлекторное воздействие тока на них происходит и при иных путях его прохождения, хотя опасность поражения при этом резко снижается. К наиболее опасным таким путям относят петли «голова -- руки» и «голова -- ноги», к наименее -- петля «нога -- нога». Однако известны смертельные поражения, когда ток проходил по пути нога -- нога или рука -- рука.

Психическое и физическое состояние человека также оказывает влияние на тяжесть поражения электрическим током. При заболеваниях сердца, щитовидной железы и т. п. человек подвергается более сильному поражению при меньших значениях тока, так как в этом случае уменьшаются электрическое сопротивление тела человека и общая сопротивляемость организма внешним раздражениям. Отмечено, например, что для женщин пороговые значения токов примерно в 1,5 раза ниже, чем для мужчин. Это объясняется более слабым физическим развитием женщин. При применении спиртных напитков сопротивление тела человека падает, уменьшаются сопротивляемость организма человека и внимание. При собранном внимании сопротивление организма повышается.

На исход поражения электрическим током влияют условия внешней среды (температура, влажность) и окружающая обстановка (наличие токопроводящей пыли, едких паров и газов). Повышенная температура, влажность повышают опасность поражения электрическим током. Чем ниже атмосферное давление, тем выше опасность поражения. Сырость, едкие пары и газы разрушающе действуют на изоляцию электроустановок.

Электроустановки классифицируют по напряжению: с номинальным напряжением до 1000 В и свыше 1000 В. Безопасность обслуживания электрооборудования также зависит от факторов окружающей среды.

В зависимости от наличия условий, повышающих опасность воздействия тока на человека, все помещения по опасности поражения людей электрическим током делят на следующие классы:

  • * первый -- помещения без повышенной опасности, в которых отсутствуют условия, создающие повышенную и особую опасность;
  • * второй -- помещения с повышенной опасностью, характеризуются наличием в них хотя бы одного из перечисленных признаков: сырости (относительная влажность воздуха длительно превышает 75 %); высокой температуры (выше + 35 °С); токопроводящей пыли; токопроводящих полов; возможности одновременного прикосновения человека к имеющим соединения с землей металлоконструкциям зданий, с одной стороны, и металлическим корпусам электрооборудования -- с другой;
  • * третий -- помещения особо опасные, характеризующиеся следующими признаками: относительной влажностью воздуха, близкой к 100 % (визуально определяют наличием конденсата на внутренней поверхности строительных конструкций зданий и помещений); химически агрессивной средой; наличием одновременно двух или более признаков помещений с повышенной опасностью; а также территории размещения наружных электроустановок. По способу защиты человека от поражения электрическим током электротехнические изделия делят на пять классов: 0, 01,1, II, III.

К классу 0 относят изделия с номинальным напряжением более 42 В с рабочей изоляцией и не имеющих приспособлений для заземления. Бытовые приборы изготавливают по классу 0, так как они предназначены для работы в помещениях без повышенной опасности.

Класс 01 включает в себя изделия с рабочей изоляцией, элементом заземления. У провода для присоединения к источнику питания нет заземляющей жилы.

Класс I включает в себя изделия с рабочей изоляцией, элементом для заземления и проводом питания с заземляющей (зануляющей) жилой и штепсельной вилкой с заземляющим контактом.

К классу П относят изделия, имеющие у всех доступных прикосновению частей двойную или усиленную изоляцию относительно частей, нормально находящихся под напряжением, и не имеющие элементов заземления.

Класс III представляет собой изделия без внутренних и внешних электрических цепей с напряжением не выше 42 В.

Понравилось? Лайкни нас на Facebook