Как работает интерфейс usb. Как работает USB зарядка или может сломаться ваш смартфон? Типы передачи данных

О том, что такое флэшка, Вы можете прочитать на многих сайтах. Вам также подробно расскажут, чего нельзя с ней делать. А вот как узнать, что с ней можно делать? А вот бы урок с наглядным показом по всем пунктам (от А до Я) о работе с флэшкой? Допустим, что Вы пожелали перенести с одного компа на другой текст (пускай второй комп к Интернету будет неподключен).

А во втором случае мультик, в третьем случае и то и другое. Что самое главное в уроке – ВСЕ последовательные действия переноса. Оригинальное требование? Но ведь только таким образом можно показать, разъяснить, уберечь незнайку (камушек в огород новичков, не совладать им с флэшкой) от лишних и ненужных действий!

Информации о флешке много, а вот конкретной пошаговой “инструкции” по работе с флешкой нет! А зря! Уверена, что такие вот “трудности” есть у многих, а вот написать о них. Так что держите урок о работе с флешкой.

Вот как выглядит обычная флэшка.

Шаг 1. Вставляете ее в USB-порт (см. картинку).

Рядом с этим портом обычно находятся разъемы для наушников и микрофона.

Вот они рядом зеленого и розового цвета.

Шаг 2. Теперь нажимаете «Пуск». Затем «Мой компьютер». Среди картинок вы увидите картинку съемного диска. Название у нее может быть любое.

Главное это его наглядное изображение на картинке. Например, «KINGSTON (F:) ». При этом «KINGSTON» означает название производителя флэшки, а (F:) – это название диска.

Шаг 3. Записывать информацию на флэшку можно, по крайней мере, 2-мя способами. Рассмотрим оба.

1 способ. Продолжим с того места, на котором остановились.

1. Щелкаем по изображению флэшки левой клавишей мышки. В результате вам откроется ее содержимое.

2. Выбирайте на рабочем столе или в любой другой папке нужный файл (текстовый документ, музыку, видео, все, что угодно), который вы хотите скопировать на флэшку.

3. Теперь захватываете его левой клавишей мыши и тащите в папку флешки. Отпускаете.

Все. Вы скопировали файл на флешку!

2. способ.

1.Выбираете нужный вам файл для копирования на флешку.

2. Щелкайте по нему правой клавишей мышки.

3. Выбираете пункт «Отправить»

4. Затем выбираете пункт с изображением флешки. В нашем примере «KINGSTON (F:) ».

5. Все, файл отправлен на флешку. Можете проверить его наличие на флешке.

Шаг 4. Информацию Вы записали. Теперь надо безопасно извлечь флешку из компьютера. Для этого делаете следующее.

На этом все. Теперь вы и работу с флешкой освоили. И готовы покорять новые компьютерные горизонты! Успехов вам в этом!

В настоящий момент один из самых популярных интерфейсов — это безусловно USB. Девайсов, которые его используют, просто огромное количество. Это и мышки, и клавиатуры, и принтеры, и сотовые телефоны, и много чего ещё. В отличии от стремительно исчезающего RS-232, USB встречается во всех современных компьютерах, ноутбуках, телефонах… так что, если мы хотим создавать действительно универсальные девайсы, придётся нам этот интерфейс изучать. Вот прямо сейчас и начнём, а заодно, по ходу изучения, попытаемся сами посоздавать каких-нибудь USB-девайсов.

Итак, USB (universal serial bus) — универсальная последовательная шина . Большинство USB-устройств соответствуют спецификациям 1.1 и 2.0. В спецификации 1.1 определены две скорости передачи информации: LS (low speed) — низкая скорость, 1,5 Мбит/с и FS (full speed) — полная скорость, 12 Мбит/с. В редакции 2.0 к ним добавлена ещё и высокая скорость HS (high speed), 480 Мбит/с. Не так давно вышла ещё спецификация — 3.0, но устройства, поддерживающие этот стандарт, пока не очень распространены, поэтому и бог с ней.

Физические устройства на шине USB бывают трёх типов : хост-контроллер , хаб и конечное устройство .

Хост-контроллер — это главный управляющий шиной USB . Именно он обеспечивает связь устройств, подключенных к шине, с компьютером (с ОС и с клиентским ПО). Любые сеансы обмена данными может начинать только хост-контроллер, остальные устройства молчат в тряпочку, пока хост-контроллер к ним не обратится.

Контроллер взаимодействует с ОС через драйвер хост-контроллера (HCD — host controller driver) . Этот драйвер привязан к конкретной модели хост-контроллера. Только он знает какие данные, в какие регистры и в каком порядке пихать в хост-контроллер, а также откуда какие данные брать, чтобы хост-контроллер сделал то, чего от него хотят.

Со стороны ОС шиной USB управляет ещё один драйвер — USBD (universal serial bus driver) . Ему совершенно пофиг, как там конкретно реализован хост-контроллер и где у него какие регистры (для этого есть HCD), USBD решает общие (неспецифические для конкретного хост-контроллера) вопросы: взаимодействие с клиентским ПО, нумерация устройств на шине, их конфигурирование, распределение питания и пропускной способности шины и так далее. Это, можно сказать, своеобразный диспетчер, который осуществляет общий контроль над шиной и её взаимодействие с внешним миром (с клиентским ПО).

Хост-контроллер — птица гордая и пугливая, поэтому непосредственно ни с кем из подданных он не разговаривает. Для общения с подданными у него есть специальные помощники — хабы (их ещё иногда называют концентраторами).

Хабы — это устройства, которые позволяют физически подключить устройства USB к шине. Они предоставляют порты для подключения, ретранслируют трафик от хост-контроллера к конечным устройствам и обратно, отслеживают состояние и физически управляют электропитанием портов. У хабов есть один восходящий (upstream) порт, — это тот порт, который подключен по направлению к хост-контроллеру, и несколько нисходящих (downstream) портов, — это порты, к которым подключаются конечные устройства. Хабы можно каскадировать, подключая к нисходящему порту хаба ещё один хаб. Самый главный хаб, интегрированный с хост-контроллером, называется корневым хабом (он же — корневой концентратор или root hub ).

Другими словами можно сказать, что у хаба есть две основных задачи: 1) создать хост-контроллеру иллюзию, что он непосредственно разговаривает с подключенным к хабу устройством; 2) наблюдать за своим сегментом шины (за девайсами, подключенными к нисходящим портам), сообщать «наверх» обо всех изменениях и, если надо, — подключать и отключать питание портов.

Конечные устройства — это все те полезные устройства, которые мы подключаем к шине USB (флэшки, принтеры, мышки и т.д.)

Нужно сказать, что физические устройства и логические устройства — это не всегда одно и тоже . Существуют, например, такие конечные устройства (называемые составными — compound devices ), которые содержат внутри себя хаб, к которому подключено ещё несколько устройств. Несмотря на то, что в этом случае хаб и все, подключенные к нему устройства, запакованы в один корпус, с точки зрения логики шины это будут совершенно разные устройства.

Для логических конечных устройств обычно используют термин «функции» . Таким образом, с точки зрения логики шины, устройства на ней можно разделить на хабы и функции (и неважно, запакованы ли они в один корпус или нет). Каждое логическое устройство на шине имеет уникальный адрес (1-127), присваеваемый ему хостом при подключении.

Исходя из описанного выше, получается, что физическая топология шины USB — дерево (ну, потому что хабы можно каскадировать), а логическая топология — звезда, центром которой является хост-контроллер. Физическая и логическая топологии шины USB показаны на рисунке ниже.

Логическое устройство представляет собой набор так называемых конечных точек (endpoints или просто EP) . Физически, конечные точки — это просто разные буферы в логическом устройстве USB, через которые происходит обмен данными с хостом. Логичный вопрос — а зачем нам иметь несколько буферов? Ну, просто потому что удобно для разных задач иметь разные буферы. Устройство же у нас может выполнять параллельно несколько разных задач. (Минимум две — отслеживать команды управления от хоста и делать что-то полезное.) У этих разных задач могут могут быть разные степени важности, требования к надёжности, своевременности и скорости доставки данных и, наконец, источники и потребители пересылаемой информации также могут быть разные (источником и потребителем полезной инфы обычно является клиентский драйвер, в то же время всякая управляющая инфа ему обычно нафиг не нужна).

Поскольку для решения описанных выше проблем недостаточно иметь просто разные буферы для разной передаваемой информации, то в дополнение к этому придумали ещё кое-что.

Во-первых, придумали 4 различных типа передач. Для каждой конечной точки должно быть определено, каким из этих типов передач с ней нужно общаться. Типы передач в USB существуют следующие:

  1. изохронные передачи (isochronous transfers). Они предназначены для передачи потоковых данных в реальном времени. Такие передачи гарантируют время доставки, но не гарантируют, что все данные будут доставлены. Если во время передачи происходит ошибка, то данные просто теряются. Кроме того, для передач такого типа должно быть предварительно согласовано, какую часть пропускной способности шины эта передача будет занимать. Изохронные передачи имеют наивысший приоритет и имеют право занять до 90% пропускной способности канала. Передачи этого типа используются, например, для видеокамер, или колонок. Никого ведь не устроит, если звук в колонках будет лагать. Лучше уж потерять часть данных, но слушать песню не рывками, а непрерывно.
  2. прерывания (interrupts). Этот тип предназначен для спонтанных небольших сообщений, но с гарантированным временем обслуживания и гарантированной доставкой. Примером может служить USB клавиатура. Мы можем нажать на кнопку в любой момент (может 3 часа не нажимали, а может так и заклацали клавой каждую секунду). Пока мы спим за компом — и передавать ничего не надо. Но как только мы всё же щелканули по кнопкам — будьте любезны, сообщите об этом куда следует и желательно побыстрее.
  3. передача массивов данных (bulk data transfers). Для этого типа нет никаких гарантий по скорости, единственное в чём можно быть уверенным — что данные дойдут в целости и сохранности (когда-нибудь, гы-гы). Такие передачи имеют самый низкий приоритет, но зато им ничего не надо согласововать, — сколько останется свободной от других типов передач ширины канала — столько они и займут. Не останется вообще — будут ждать, когда канал освободится. Такие передачи можно использовать для обмена данными с устройствами, которым некуда спешить, например, с принтерами. Представьте, что вы отправили на печать USB-принтеру фотку и одновременно слушаете музыку в USB-колонках. Согласитесь ли вы, чтобы фотка напечаталась на 3 секунды раньше, но при этом начал лагать звук в колонках? Вероятнее всего нет, так ведь. Пусть лучше данные принтеру передаются медленнее, но зато музыка играет непрерывно, без всяких дёрганий.
  4. управляющие передачи (control transfers). Это передачи типа запрос-ответ. С помощью них передаются комады управления устройствами. Тут важна не только безошибочная передача, но и получение ответа о результатах выполнения команды. Кроме того, поскольку эти передачи являются служебными, то им гарантировано 10% пропускной способности канала.

Вернёмся к нашим конечным точкам. Для того, чтобы отличить одну точку от другой, — конечные точки, должны иметь уникальный номер. Но это не всё. Кроме номера, каждая конечная точка имеет ещё и направление. IN — если точка предназначена для передачи данных хосту, OUT — если точка предназначена для приёма данных от хоста. Точки с одинаковыми номерами, но с разными направлениями передачи данных — это разные с точки зрения логики шины конечные точки.

Единственное исключение — конечная точка EP0. У неё вообще особый статус. Она является служебной и предназначена для общего управления устройством (конфигурирование, настройка и т.д.). Кроме того, эта конечная точка двунаправленная и она должна обязательно присутствовать в любом USB-устройстве.

Исходя из всего вышеописанного, для идентификации какой-то конечной точки на шине, нам нужно знать адрес устройства, к которому относится конечная точка, её номер в устройстве и направление передачи данных через эту точку.

Поскольку устройство не всегда делает абсолютно всё на что оно только способно, да и способов решения одной и той же задачи оно может иметь несколько, то обычно нет необходимости задействовать абсолютно все конечные точки. Поэтому придумали такие понятия, как интерфейс , конфигурация и альтернативные установки. Интерфейс объединяет конечные точки, предназначенные для решения какой-либо одной задачи . Наборы используемых одновременно интерфейсов называются конфигурациями . Альтернативные установки позволяют включать или отключать какие-то входящие в конфигурацию конечные точки, в зависимости от способа решения задач для которых предназначена эта конфигурация.

Самих конфигураций и альтернативных установок у каждой из этих конфигураций для одного логического устройства может существовать несколько, но в каждый момент времени только один из этих наборов может быть активен. Причём хост должен знать, какой именно набор активен и в соответствии с этим обеспечивать связь с входящими в этот набор конечными точками. Остальные конечные точки, не входящие в активный набор, не будут доступны для связи.

Поясню, что значит «обеспечивать связь с конечными точками». Для связи клиентского ПО с каждой активной конечной точкой хост создаёт коммуникационный канал (communication pipe ). Клиентское ПО, которое хочет пообщаться с конечной точкой, должно отправить к соответствующему каналу пакет запроса ввода/вывода (IRP — input/output request packet) и ждать уведомления о завершении его обработки. В IRP указывается только адрес буфера, куда надо складывать или откуда брать данные и длина передачи. Всё остальное за вас сделает хост и обслуживающие его драйвера (USBD и HCD)

Источник данных - или контроллер или устройства в зависимости от направления - то посылается пакет данных. В большинстве случаев операция завершается назначением отправки данных Пакеты ACK, указывают на данные которые были приняты, НАК, указывают, что данные не были приняты, или STALL, который сигнализирует о том, что конечная точка застопорилась.

Движение на USB регулируется единицей времени кадра. Длина каждого кадра определяет время,и работает на скорости 1 кГц, поэтому есть 1000 кадров в секунду: одна в миллисекунду. В начале каждого фрейма начала кадра (SOF) пакет отправляется по шине, что позволяет изохронным устройствам сделать синхронизацию с каналом связи.
Концепция кадров имеет ключевое значение для того, что бы канал связи имел пропускную способность шины между различными конкурирующими устройствами. USB-разработчики считают, что было бы невозможно поддерживать несколько одновременных потоков изохронной связи с быстрыми темпами образца с помощью системы, в которой каждое устройство должно прерывать хост для каждой выборки данных, которые будут переданы. Поэтому они разработали систему так, чтобы изохронные устройства имели гарантированное полосы пропускания путем выделения им доли времени в каждом кадре.
По меньшей мере 10 процентов каждого кадра зарезервированы для использования в управляющих передачах. Эта доля может быть увеличена путем системного программного обеспечения, если производительность будет признана маленькой путём контроля пакетов, которые чрезмерно задерживаются. Максимальная непрерывная пропускная способность выше скорости USB должна быть менее 90 процентов скорости передачи.
Часть или всё оставшееся время в каждом кадре можно передать по каналам связи изохронных устройств. Фактическая доля выделяемых каждому каналу связи заранее оговорено, когда канал связи установлен. Это гарантирует, что определенный объем данных может быть передаваться каждую миллисекунду. Любая оставшаяся пропускная способность доступна для других типов передачи.
Изохронные устройства должны иметь буфер данных и один кадр и возможность отправить каждому блоку по шине в качестве одной транзакции. На приемном конце небуферизованные данные восстановливаются в режиме реального времени. Например, аудио устройство работает с CD-качеством и частотой дискретизации 44,1 кГц пошлет девять кадров с 44 выборками на кадр, а затем один кадр с 45 образцами. После буферизации на источник и unbuffering в пункте назначения будет задержка пару миллисекунд в предоставлении данных, но скорость доставки - которая, что важно для сохранения качества - будет сохранена.
Прерывание перевода также в определенной степени имеет критическое время. Когда создаются каналы связи для прерывания конечной точки, требуемый период доступа к шине от 1 до 255ms (10 и 255ms в случае низкой скорости устройств) не указан. Системное программное обеспечение опрашивает прерывание конечной точки в интервале, который гарантирует, что если операция прерывание еще не завершена она рассматривается в течение желаемого периода времени.
Обработка ошибок
Значительные функции проверки ошибок и обработки ошибок были встроены в USB , чтобы гарантировать, что это надежный способ подключения периферийных устройств к ПК. Целостность данных должна быть сопоставима с внутренней шиной расширения.
Иммунитет от повреждения данных благодаря шуму был обеспечен за счет использования дифференциальной логики каналов связи и экранированным кабелям. Если ошибки происходят, циклическая избыточная проверка (контрольные суммы) проводится отдельно на каждом контрольном поле данных пакетов,и позволяет на 100 процентов восстановлению как одиночной, так и двойных ошибок бита. Неустранимые ошибки могут быть обнаружены с высокой степенью достоверности.
Механизм самовосстановления встроен в протокол обмена сообщениями, с тайм-аутом для потерянных и недействительных пакетов. Некоторые ошибок встроены в аппаратные средства. Хост-контроллер будет отправлять транзакции приводящие к краху три раза, прежде чем сообщить об ошибке клиентского программного обеспечения.
Прерывание и передача данных объединяются в пакет, что бы предоставить подтверждение того, что данные были получены, или опросить, чтобы он был повторно отправлен, если этого не было. Таким образом гарантируется доставка этих данных, даже если время, необходимое для доставки меньше.
С изохронными данными, невозможно повторение не удачной передачи данных. Так как только один «Слот» выделяется в канале связи во время каждого кадра, повторная отправка данных приведет к задержке передачи последующих образцов данных, нарушая время элементов передачи данных. Поэтому отправляется не пакет, а данные которые должны быть приняты «как есть».
Заключение
Universal Serial Bus обеспечивает универсальный, гибкий способ подключения широкого спектра низкоскоростных и средне скоростных периферийных устройств к ПК при относительно низких затратах. Его установка, подключение и конфигурация означает, что установка и поддержка периферийных устройств значительно проще по сравнению с устройствами, использующими последовательный, параллельный или собственные интерфейсы.

На сегодняшний день флешки являются самыми популярными внешними носителями данных. В отличие от оптических и магнитных дисков (CD/DVD и винчестеры соответственно), флеш-накопители более компактны и устойчивы к механическим повреждениям. А за счет чего были достигнуты компактность и устойчивость? Давайте же разберемся!

Первое, что следует отметить — внутри flash-накопителя нет движущихся механических частей, которые могут пострадать от падений или сотрясений. Это достигается за счет конструкции — без защитного корпуса флешка представляет собой печатную плату, к которой припаян USB-разъем. Давайте рассмотрим её составляющие.

Основные компоненты

Составные части большинства флешек можно разделить на основные и дополнительные.


К основным относятся:

  1. чипы NAND-памяти;
  2. контроллер;
  3. кварцевый резонатор.
  4. USB-разъем

NAND-память
Накопитель работает благодаря NAND-памяти: полупроводниковым микросхемам. Чипы такой памяти, во-первых, весьма компактны, а во-вторых — очень ёмкие: если на первых порах флешки по объему проигрывали привычным на тот момент оптическим дискам, то сейчас превышают по ёмкости даже диски Blu-Ray. Такая память, ко всему прочему, еще и энергонезависимая, то есть для хранения информации ей не требуется источник питания, в отличие от микросхем оперативной памяти, созданных по похожей технологии.


Однако у НАНД-памяти есть один недостаток, в сравнении с другими типами запоминающих устройств. Дело в том, что срок службы этих чипов ограничен определенным количеством циклов перезаписи (шагов чтения/записи информации в ячейках). В среднем количество read-write cycles равно 30 000 (зависит от типа чипа памяти). Кажется, это невероятно много, но на самом деле это равно примерно 5 годам интенсивного использования. Впрочем, даже если ограничение будет достигнуто, флешкой можно будет продолжать пользоваться, но только для считывания данных. Кроме того, вследствие своей природы, NAND-память очень уязвима к перепадам электричества и электростатическим разрядам, так что держите её подальше от источников подобных опасностей.

Контроллер
Под номером 2 на рисунке в начале статьи находится крохотная микросхема — контроллер, инструмент связи между флеш-памятью и подключаемыми устройствами (ПК, телевизорами, автомагнитолами и пр.).


Контроллер (иначе называется микроконтроллер) представляет собой миниатюрный примитивный компьютер с собственным процессором и некоторым количеством RAM, используемыми для кэширования данных и служебных целей. Под процедурой обновления прошивки или BIOS подразумевается как раз обновление ПО микроконтроллера. Как показывает практика, наиболее частая поломка флешек — выход из строя контроллера.

Кварцевый резонатор
Данный компонент представляет собой крохотный кристалл кварца, который, как и в электронных часах, производит гармонические колебания определенной частоты. Во флеш-накопителях резонатор используется для связи между контроллером, NAND-памятью и дополнительными компонентами.

Эта часть флешки также подвержена риску повреждения, причем, в отличие от проблем с микроконтроллером, решить их самостоятельно практически невозможно. К счастью, в современных накопителях резонаторы выходят из строя относительно редко.

USB-коннектор
В подавляющем большинстве случаев в современных флешках установлен разъем USB 2.0 типа A, ориентированный на прием и передачу. В самых новых накопителях используется USB 3.0 типа А и типа C.

Дополнительные компоненты

Кроме упомянутых выше основных составляющих запоминающего flash-устройства, производители нередко снабжают их необязательными элементами, такими как: светодиод-индикатор, переключатель защиты от записи и некоторые специфические для определенных моделей особенности.

Светодиодный индикатор
Во многих flash-накопителях присутствует небольшой, но довольно яркий светодиод. Он предназначен для визуального отображения активности флешки (запись или считывание информации) или же просто является элементом дизайна.


Этот индикатор чаще всего не несет никакой функциональной нагрузки для самой флешки, и нужен, по сути, только для удобства пользователя или для красоты.

Переключатель защиты от записи
Этот элемент характерен скорее для SD-карт, хотя порой встречается и на запоминающих устройствах USB. Последние нередко используются в корпоративной среде как носители разнообразной информации, в том числе важной и конфиденциальной. Чтобы избежать инцидентов со случайным удалением таких данных, производителями флеш-накопителей в некоторых моделях применяется переключатель защиты: резистор, который при подключении в цепь питания запоминающего устройства не дает электрическому току добираться к ячейкам памяти.


При попытке записать или удалить информацию с накопителя, в котором включена защита, ОС выдаст такое вот сообщение.

Подобным образом реализована защита в так называемых USB-ключах: флешках, которые содержат в себе сертификаты безопасности, необходимые для корректной работы некоторого специфического ПО.

Этот элемент тоже может сломаться, в результате чего возникает досадная ситуация — девайс вроде работоспособен, но пользоваться им невозможно. У нас на сайте есть материал, который может помочь решить эту проблему.

Уникальные компоненты

К таковым можно отнести, например, наличие разъемов Lightning, microUSB или Type-C: флешки с наличием таковых предназначены для использования в том числе на смартфонах и планшетах.

USB (Universal Serial Bus - универсальная последовательная шина) является промышленным стандартом расширения архитектуры PC, ориентированным на интеграцию с телефонией и устройствами бытовой электроники.

Приеимущества шины:

  • USB устройство может быть подсоединено к компьютеру в любой момент времени, даже когда включен;
  • когда компьютер обнаруживает подключенное USB устройство, он автоматически опрашивает его, чтобы узнать его возможности и требования;
  • производит загрузку драйвера, а при отключении устройства драйвер автоматически выгружается;
  • USB устройство не использует джемперов, DIP переключателей, никогда не вызывает конфликтов прерываний, DMA, памяти;
  • расширяющие USB хабы позволяют подключать к одной шине большое количество устройств (до 127 устройств);
  • низкая стоимость USB устройств.

Возникновение USB сделало возможным создание USB Flash Drive (USB-накопитель).

История создания и развития интерфейса USB

Первая версия компьютерного интерфейс USB появилась 15 января 1996 года. Инициаторами проекта был альянс 7 крупных компаний производителей Intel, DEC, IBM, Northen Telecom, Compaq.

Причиной возникновения нового стандарта для передачи информации, послужила желание упростить соединение ПК с периферийными устройствами. Основная цель стандарта, была создать для пользователей возможность пользоваться таким интерфейсом, который бы обладал максимальной простотой, универсальностью, и использовал принцип Plug&Play или горячее соединение.

Это позволило бы подключать к ПК во время работы различные устройства ввода-вывода, с условием немедленного автоматического распознавания типа и модели подключённого устройства. Также, была поставлена цель, - избавиться от проблемы нехватки внутренних ресурсов прерываний системной шины.

Все эти задачи успешно были решены к концу 1996 года, а к весне 1997 года, стали появляться первые ПК, оборудованные разъёмами USB. Полная поддержка USB устройств была осуществлена только к концу 1998 года, в операционной системе Windows98, и только с этого этапа, началось особенно бурное развитие и выпуск периферийного оборудования, оснащённого этим интерфейсом.

По-настоящему массовое внедрение USB началось с широким распространением корпусов и системных плат форм-фактора ATX примерно в 1997-1998 годах. Не упустила шанс воспользоваться достижениями прогресса и компания Apple, представившая 6 мая 1998 года свой первый iMac, также оснащенный поддержкой USB.

Этот стандарт был рождён, в то время, когда уже существовал аналогичный последовательный интерфейс передачи данных, разработанный Apple Computer и имел название FireWare или IEE1394. USB - интерфейс был создан, как альтернатива IEE1394, и был призван не заменить его, а существовать параллельно уже существующему типу соединений.

Первая версия USB имела некоторые проблемы совместимости и содержала несколько ошибок в реализации. В итоге, в ноябре 1998 года вышла спецификаций USB 1.1.

Спецификация USB 2.0 была представлена в апреле 2000 года. Но до принятия ее в качестве стандарта прошло больше года. После этого началось массовое внедрение второй версии универсальной последовательной шины. Главным ее достоинством было 40-кратное увеличение скорости передачи данных. Но кроме этого были и другие нововведения. Так появились новые типы разъемов Mini-B и Micro-USB, добавилась поддержка технологии USB On-The-Go (позволяет USB-устройствам вести обмен данными между собой без участия USB-хоста), появилась возможность использования напряжения, подаваемого через USB, для зарядки подключенных устройств.

Принцип работы шины USB

USB обеспечивает обмен данными между хост-компьютером и множеством периферийных устройств (ПУ). Согласно спецификации USB, устройства (device) могут являться хабами, функциями или их комбинацией. Хаб (hub) только обеспечивает дополнительные точки подключения устройств к шине. Устройство-функция (function) USB предоставляет системе дополнительные функциональные возможности, например подключение к ISDN, цифровой джойстик, акустические колонки с цифровым интерфейсом и т. п. Комбинированное устройство (compound device), реализующее несколько функций, представляется как хаб с подключенными к нему несколькими устройствами.

Работой всей системы USB управляет хост-контроллер (host controller), являющийся программно-аппаратной подсистемой компьютера. Шина позволяет подключать, конфигурировать, использовать и отключать устройства во время работы хоста и самих устройств.

Шина USB является хост-центрической: единственным ведущим устройством, которое управляет обменом, является хост-компьютер, а все присоединенные к ней периферийные устройства - исключительно ведомые. Физическая топология шины USB - многоярусная звезда. Ее вершиной является хост-контроллер, объединенный с корневым хабом (root hub). Хаб является устройством-разветвителем, кроме того, он может являться источником питания для подключенных к нему устройств. К каждому порту хаба может непосредственно подключаться периферийное устройство или промежуточный хаб; шина допускает до 5 уровней каскадирования хабов (не считая корневого). Каждый промежуточный хаб имеет несколько нисходящих (downstream) портов для подключения периферийных устройств (или нижележащих хабов) и один восходящий (upstream) порт для подключения к корневому хабу или нисходящему порту вышестоящего хаба.

К USB-хосту сходятся данные от подключенных устройств и он же обеспечивает взаимодействие с компьютером. Все устройства подключаются по топологии "звезда". Чтобы увеличить число активных разъемов USB можно воспользоваться USB-хабами. Таким образом получится аналог логической структуры "дерево". "Ветвей" у такого дерева может быть до 127 штук на один хост-контроллер, а уровень вложенности USB-хабов не должен превышать пяти. Кроме того, в одном USB-хосте может быть несколько хост-контроллеров, что пропорционально увеличивает максимальное число подключенных устройств.

Хабы бывают двух видов. Одни просто увеличивают число USB-разъемов в одном компьютере, а другие позволяют подключать несколько компьютеров. Второй вариант позволяет использовать нескольким системам одни и те же устройства. В зависимости от хаба переключение может производится как вручную, так и автоматически.

Одно физическое устройство, подключенное через USB, может логически подразделяться на "под-устройства", выполняющие те или иные определенные функции. Например, у веб-камеры может быть встроенные микрофон - получается, что у нее два под-устройства: для передачи аудио и видео.

Передача данных происходит через специальные логические каналы. Каждому USB-устройству может быть выделено до 32 каналов (16 на прием и 16 на передачу). Каждый канал подключается к условно называемой "конечной точке". Конечная точка может либо принимать данные, либо передавать их, но не способна делать это одновременно. Группа конечных точек, необходимых для работы какой-либо функции, называется интерфейсом. Исключение составляет "нулевая" конечная точка, предназначающаяся для конфигурации устройства.

Когда к USB-хосту подключается новое устройство начинается процесс присвоения ему идентификатора. Первым делом устройству посылается сигнал перехода в исходное состояние. Тогда же происходит и определение скорости, с которой может вестись обмен данными. После считывается конфигурационная информация с устройства, и ему присваивается уникальный семибитный адрес. Если устройство поддерживается хостом, то загружаются все необходимые драйвера для работы с ним, после чего процесс завершен. Перезагрузка USB-хоста всегда вызывает повторное присвоение идентификаторов и адресов всем подключенным девайсам.

В отличие от шин расширения (ISA/EISA, PCI, PC Card), где программа взаимодействует с устройствами путем обращений по физическим адресам ячеек памяти, портов ввода-вывода, прерываниям и каналам DMA, взаимодействие приложений с устройствами USB выполняется только через программный интерфейс. Этот интерфейс, обеспечивающий независимость обращений к устройствам, предоставляется системным ПО контроллера USB.

Для подключения периферийных устройств к шине USB используется четырёхпроводный кабель, при этом два провода (витая пара) в дифференциальном включении используются для приёма и передачи данных, а два провода - для питания периферийного устройства. Благодаря встроенным линиям питания, шина USB позволяет подключать периферийные устройства без собственного источника питания (максимальная сила тока, потребляемого устройством по линиям питания шины USB, не должна превышать 500 мА).

Кодирование данных

Для передачи данных по шине используется дифференциальный способ передачи сигналов D+ и D- по двум проводам. Все данные кодируются с помощью метода, называемого NRZI with bit stuffing (NRZI - Non Return to Zero Invert, метод возврата к нулю с инвертированием единиц).

Вместо кодирования логических уровней как уровней напряжения USB определяет логический 0 как изменение напряжения, а логическую 1 как неизменение напряжения. Этот метод представляет собой модификацию обычного потенциального метода кодирования NRZ (Non Return to Zero, невозврат к нулю), когда для представления 1 и 0 используются потенциалы двух уровней, но в методе NRZI потенциал, используемый для кодирования текущего бита, зависит от потенциала, который использовался для кодирования предыдущего бита. Если текущий бит имеет значение 0, то текущий потенциал представляет собой инверсию потенциала предыдущего бита, независимо от его значения. Если же текущий бит имеет значение 1, то текущий потенциал повторяет предыдущий. Очевидно, что если данные содержат нули, то приемнику и передатчику достаточно легко поддерживать синхронизацию - уровень сигнала будет постоянно меняться. А вот если данные содержат длинную последовательность единиц, то уровень сигнала меняться те будет, и возможна рассинхронизация. Следовательно, для надежной передачи данных нужно исключить из кодов слишком длинные последовательности единиц. Это действие называется стаффинг (Bit stuffing): после каждых шести единиц автоматически добавляется 0.

Существует только три возможных байта с шестью последовательными единицами: 00111111, 01111110, 111111100.

Стаффинг может увеличить число передаваемых бит до 17%, но на практике эта величина значительно меньше. Для устройств, подключаемых к шине USB, кодирование происходит прозрачно: USB-контроллеры производят кодирование и декодирование автоматически.

Режимы работы шины

  • Low Speed поддерживается стандартами версии 1.1 и 2.0. Пиковая скорость передачи данных - 1.5 Мбит/с (187.5 Кбайт/с). Чаще всего применяется для HID-устройств (клавиатур, мышей, джойстиков).
  • Full Speed поддерживается стандартами версии 1.1 и 2.0. Пиковая скорость передачи данных - 12 Мбит/с (1.5 Мбайт/с). До выхода USB 2.0 был наиболее быстрым режимом работы.
  • Hi-Speed поддерживается стандартом версии 2.0 и 3.0. Пиковая скорость передачи данных - 480 Мбит/с (60 Мбайт/с).
  • Super-Speed поддерживается стандартом версии 3.0. Пиковая скорость передачи данных - 4.8 Гбит/с (600 Мбайт/с).

Передача данных

Механизм передачи данных является асинхронным и блочным. Блок передаваемых данных называется USB-фреймом или USB-кадром и передается за фиксированный временной интервал. Оперирование командами и блоками данных реализуется при помощи логической абстракции, называемой каналом. Внешнее устройство также делится на логические абстракции, называемые конечными точками. Таким образом, канал является логической связкой между хост-контроллером и конечной точкой внешнего устройства. Канал можно сравнить с открытым файлом.

Для передачи команд (и данных, входящих в состав команд) используется канал по умолчанию, а для передачи данных открываются либо потоковые каналы, либо каналы сообщений.

Информация по каналу передается в виде пакетов (Packet). Каждый пакет начинается с поля синхронизации SYNC (SYNChronization), за которым следует идентификатор пакета PID (Packet IDentifier).

Систему USB следует разделить на три логических уровня с определенными правилами взаимодействия. Устройство USB содержит интерфейсную, логическую и функциональную части. Хост тоже делится на три части - интерфейсную, системную и программное обеспечение. Каждая часть отвечает только за определенный круг задач.

Операция обмена данными между прикладной программой и шиной USВ выполняется путем передачи буферов памяти через следующие уровни: Уровень клиентского ПО в хосте:

  • обычно представляется драйвером устройства USB;
  • обеспечивает взаимодействие пользователя с операционной системой с одной стороны и системным драйвером с другой.

Уровень системного обеспечения USB в хосте (USBD, Universal Serial Bus Driver):

  • управляет нумерацией устройств на шине;
  • управляет распределением пропускной способности шины и мощности питания;
  • обрабатывает запросы пользовательских драйверов.

Хост-контроллер интерфейса шины USB (HCD, Host Controller Driver):

  • преобразует запросы ввода/вывода в структуры данных, по которым хост-контроллер выполняет физические транзакции;
  • работает с регистрами хост-контроллера.

Уровень клиентского программного обеспечения определяет тип передачи данных, необходимый для выполнения затребованной прикладной программой операции. После определения типа передачи данных этот уровень передает системному уровню следующее:

  • буфер памяти, называемый клиентским буфером;
  • пакет запроса на в/в (IRP, Input/output Request Packet), указывающий тип необходимой операции.
  • IRP содержит только сведения о запросе (адрес и длина буфера в оперативной памяти). Непосредственно обработкой запроса занимается системный драйвер USB.

Уровень системного драйвера USB необходим для управления ресурсами USB. Он отвечает за выполнение следующих действий:

  • распределение полосы пропускания шины USB;
  • назначение логических адресов устройств каждому физическому USB-устройству;
  • планирование транзакций.

Логически передача данных между конечной точкой и ПО производится с помощью выделения канала и обмена данными по этому каналу.Клиентское ПО посылает IPR-запросы уровню USBD. Драйвер USBD разбивает запросы на транзакции по следующим правилам:

  • выполнение запроса считается законченным, когда успешно завершены все транзакции, его составляющие;
  • все подробности отработки транзакций (такие как ожидание готовности, повтор транзакции при ошибке, неготовность приемника и т. д.) до клиентского ПО не доводятся;
  • ПО может только запустить запрос и ожидать или выполнения запроса или выхода по тайм-ауту;
  • устройство может сигнализировать о серьезных ошибках, что приводит к аварийному завершению запроса, о чем уведомляется источник запроса.

Драйвер контроллера хоста принимает от системного драйвера шины перечень транзакций и выполняет следующие действия:

  • планирует исполнение полученных транзакций, добавляя их к списку транзакций;
  • извлекает из списка очередную транзакцию и передает ее уровню хост-контроллера интерфейса шины USB;
  • отслеживает состояние каждой транзакции вплоть до ее завершения.

Хост-контроллер интерфейса шины USB формирует кадры. Кадры передаются последовательной передачей бит по методу NRZI.

Таким образом:

  • каждый кадр состоит из наиболее приоритетных посылок, состав которых формирует драйвер хоста;
  • каждая передача состоит из одной или нескольких транзакций;
  • каждая транзакция состоит из пакетов;
  • каждый пакет состоит из идентификатора пакета, данных (если они есть) и контрольной суммы.


Типы передачи данных

Спецификация шины определяет четыре различных типа передачи (transfer type) данных для конечных точек.

Управляющие передачи (Control Transfers) - используются хостом для конфигурирования устройства во время подключения, для управления устройством и получения статусной информации в процессе работы. Протокол обеспечивает гарантированную доставку таких посылок. Длина поля данных управляющей посылки не может превышать 64 байт на полной скорости и 8 байт на низкой. Для таких посылок хост гарантированно выделяет 10% полосы пропускания.

Передачи массивов данных (Bulk Data Transfers) - применяются при необходимости обеспечения гарантированной доставки данных от хоста к функции или от функции к хосту, но время доставки не ограничено. Taкая передача занимает всю доступную полосу пропускания шины. Пакеты имеют поле данных размером 8, 16, 32 или 64 байт. Приоритет у таких передач самый низкий, они могут приостанавливаться при большой загрузке шины. Допускаются только на полной скорости передачи. Такие посылки используются, например, принтерами или сканерами.

Передачи по прерываниям (Interrupt Transfers) - используются в том случае, когда требуется передавать одиночные пакеты данных небольшого размера. Каждый пакет требуется передать за ограниченное время. Операции передачи носят спонтанный характер и должны обслуживаться не медленнее, чем того требует устройство. Поле данных может содержать до 64 байт на полной скорости и до 8 байт на низкой. Предел времени обслуживания устанавливается в диапазоне 1-255 мс для полной скорости и 10-255 мс - для низкой. Такие передачи используются в устройствах ввода, таких как мышь и клавиатура.

Изохронные передачи (Isochronous Transfers) - применяются для обмена данными в "реальном времени", когда на каждом временном интервале требуется передавать строго определенное количество данных, но доставка информации не гарантирована (передача данных ведется без повторения при сбоях, допускается потеря пакетов). Такие передачи занимают предварительно согласованную часть пропускной способности шины и имеют заданную задержку доставки. Изохронные передачи обычно используются в мультимедийных устройствах для передачи аудио- и видеоданных, например, цифровая передача голоса. Изохронные передачи разделяются по способу синхронизации конечных точек - источников или получателей данных - с системой. Различают асинхронный, синхронный и адаптивный классы устройств, каждому из которых соответствует свой тип канала USB.

Все операции по передаче данных инициируются только хостом независимо от того, принимает ли он данные или пересылает в периферийное устройство. Все невыполненные операции хранятся в виде четырех списков по типам передач. Списки постоянно обновляются новыми запросами. Планирование операций по передаче информации в соответствии с упорядоченными в виде списков запросами выполняется хостом с интервалом один кадр. Обслуживание запросов выполняется в соответствии со следующими правилами:

  • наивысший приоритет имеют изохронные передачи;
  • после отработки всех изохронных передач система переходит к обслуживанию передач прерываний;
  • в последнюю очередь обслуживаются запросы на передачу массивов данных;
  • по истечении 90% указанного интервала хост автоматически переходит к обслуживанию запросов на передачу управляющих команд независимо от того, успел ли он полностью обслужить другие три списка или нет.

Выполнение этих правил гарантирует, что управляющим передачам всегда будет выделено не менее 10% пропускной способности шины USB. Если передача всех управляющих пакетов будет завершена до истечения выделенной для них доли интервала планирования, то оставшееся время будет использовано хостом для передач массивов данных.

Версии спецификации

Разработка спецификаций на шину USB производится в рамках международной некоммерческой организации USB Implementers Forum (USB-IF), объединяющей разработчиков и производителей оборудования с шиной USB.

С середины 1996 года выпускаются PC со встроенным контроллером USB, реализуемым чипсетом системной платы.

Первая версия спецификации USB 1.0 поддерживает два режима скорости передачи данных между устройством и компьютером:

  • Low Speed (1.5 Mbits/sec) , для таких устройств как мыши, клавиатуры и джойстики;
  • Full Speed (12 Mbits/ sec) , для модемов и сканеров.

Осенью 1998 года вышла версия 1.1 - в ней были устранены обнаруженные проблемы первой редакции.

Основные технические характеристики USB 1.1:

  • Достаточно высокая максимальная скорость обмена - до 12 Мбит/с.
  • Максимальная длина кабеля для высокой скорости обмена - 4,5 м.
  • Максимальное количество подключенных устройств (включая размножители) - до 127.
  • Возможно подключение устройств с различными скоростями обмена.
  • Не требуется использование дополнительных устройств и терминаторов.
  • Подается напряжение питания для периферийных устройств - 5 В.
  • Максимальный ток потребления на одно устройство - 500 mA.

Весной 2000 года опубликована спецификация USB 2.0, в которой предусмотрено 40-кратное повышение пропускной способности шины(до 480 Мбит/с в высокоскоростном режиме). Однако устройства USB 2.0 вышли на массовый рынок в 2002 года, когда новый интерфейс, наконец, смог утвердиться.

Вторая версия спецификации USB 2.0 позволяет использовать еще один режим High Speed (480 Mbit/sec) для таких устройств, как жесткие диски, CD-ROM, цифровые камеры. Пропускная способность 480 Мбит/с достаточная и для внешних накопителей, MP3-плееров, смартфонов и цифровых камер, которым требовалась передавать большое количество данных. Также спецификация USB 2.0 полностью поддерживает устройства, разработанные для первой версии. Контроллеры и хабы автоматически определяют версию спецификации, поддерживаемую устройством. Шина позволяет соединять до 127 устройств, удаленныех от компьютера на расстоянии до 25 м (с использованием промежуточных хабов).

После своего широкого внедрения USB 2.0 удалось полностью заменить последовательный и параллельный интерфейсы.

В настоящее время широко используются устройства, выполненные в соответствии со спецификацией USB 2.0.

USB 3.0

USB 3.0 поддерживает максимальную скорость передачи 5 Гбит/с.

Коннектор USB 3.0 типа А

Основной целью интерфейса USB 3.0 является повышение доступной пропускной способности, однако новый стандарт эффективно оптимизирует энергопотребление. У USB 3.0 есть четыре состояния подключения, названные U0-U3. Состояние подключения U0 соответствует активной передаче данных, а U3 погружает устройство в "сон". Если подключение бездействует, то в состоянии U1 будут отключены возможности приёма и передачи данных. Состояние U2 идёт ещё на шаг дальше, отключая внутренние тактовые импульсы.

Коннектор USB 3.0 типа В

Соответственно, подключённые устройства могут переходить в состояние U1 сразу же после завершения передачи данных, что, как предполагается, даст ощутимые преимущества по энергопотреблению, если сравнивать с USB 2.0.

Кроме разных состояний энергопотребления стандарт USB 3.0 отличается от USB 2.0 и более высоким поддерживаемым током. Если версия USB 2.0 предусматривала порог тока 500 мА, то в случае нового стандарта ограничение было сдвинуто до планки 900 мА. Ток при инициации соединения был увеличен с уровня 100 мА у USB 2.0 до 150 мА у USB 3.0. Оба параметра весьма важны для портативных жёстких дисков, которые обычно требуют чуть большие токи. Раньше проблему удавалось решить с помощью дополнительной вилки USB, получая питание от двух портов, но используя только один для передачи данных.

Кабели и разъемы USB

В отличие от громоздких дорогих шлейфов параллельных шин АТА и особенно шины SCSI с ее разнообразием разъемов и сложностью правил подключения, кабельное хозяйство USB простое и изящное.

Существует пять видов USB-разъемов :

Слева направо: micro USB, mini USB, B-type, A-type разъем, A-type коннектор

  • micro USB - используется в самых миниатюрных устройствах вроде плееров и мобильных телефонов;
  • mini USB - также часто обнаруживается на плеерах, мобильных телефонах, а заодно и на цифровых фотоаппаратах, КПК и тому подобных устройствах;
  • B-type - полноразмерный разъем, устанавливаемый в принтерах, сканерах и других устройствах, где размер не имеет очень принципиального значения;
  • A-type (приемник) - разъем, устанавливаемый в компьютерах (либо на удлинителях USB), куда подключается коннектор типа A-type;
  • A-type (вилка) - коннектор, подключаемый непосредственно к компьютеру в соответствующий разъем.

Cистема кабелей и коннекторов USB не дает возможности ошибиться при подключении устройств. Гнезда типа «А» устанавливаются только на нисходящих портах хабов, вилки типа «А» - на шнурах периферийных устройств или восходящих портов хабов. Гнезда и вилки типа «В» используются только для шнуров, отсоединяемых от периферийных устройств и восходящих портов хабов (от «мелких» устройств - мышей, клавиатур и т. п. кабели, как правило, не отсоединяются). Хабы и устройства обеспечивают возможносгь «горячего» подключения и отключения.

Максимальная длина USB-кабеля может составлять 5 метров. Данное ограничение введено для снижения времени отклика устройства. Хост-контроллер ожидает поступление данных ограниченное время, и если они задерживаются, то соединение может быть потеряно.

Кабель для поддержки полной скорости шины (full-speed) выполняется как витая пара, защищается экраном и может также использоваться для работы в режиме минимальной скорости (low-speed). Кабель для работы только на минимальной скорости (например, для подключения мыши) может быть любым и неэкранированным.

Литература

  1. Косцов А.,Косцов В.Железо ПК. Настольная книга пользователя. - М.: Мартин, 2006. - 480 с.
Понравилось? Лайкни нас на Facebook