Схемы простых усилителей нч на транзисторах. Простейшие усилители низкой частоты на транзисторах. Двухкаскадные УНЧ с непосредственной связью между каскадами


Транзисторные усилители, несмотря на появление более современных микросхемных, не потеряли свой актуальности. Достать микросхему бывает, порой, не так легко, а вот транзисторы можно выпаять практически из любого электронного устройства, именно поэтому у заядлых радиолюбителей иногда накапливаются горы этих деталей. Для того, чтобы найти им применение предлагаю к сборке незатейливый транзисторный усилитель мощности, сборку которого осилит даже начинающий.

Схема

Схема состоит из 6-ти транзисторов и может развивать мощность до 3-х ватт при питании напряжением 12 вольт. Этой мощности хватит для озвучивания небольшой комнаты или рабочего места. Транзисторы Т5 и Т6 на схеме образуют выходной каскад, на их место можно поставить широко распространённые отечественные аналоги КТ814 и КТ815. Конденсатор С4, который подключается к коллекторам выходных транзисторов, отделяет постоянную составляющую сигнала на выходе, именно поэтому данный усилитель можно использовать без платы защиты акустических систем. Даже если усилитель в процессе работы выйдет из строя и на выходе появится постоянное напряжение, оно не пройдёт дальше этого конденсатора и динамики акустической системы останутся целы. Разделительный конденсатор С1 на входе лучше применить плёночный, но если такого нет под рукой, подойдёт и керамический. Аналогом диодов D1 и D2 в данной схеме являются 1N4007 или отечественные КД522. Динамик можно использовать сопротивлением 4-16 Ом, чем ниже его сопротивление, тем большую мощность будет развивать схема.

(cкачиваний: 529)


Сборка усилителя

Собирается схема на печатной плате размерами 50х40 мм, рисунок в формате Sprint-Layout к статье прилагается. Приведённую печатную плату при печати необходимо отзеркалить. После травления и удаления тонера с платы сверлятся отверстия, лучше всего использовать сверло 0,8 - 1 мм, а для отверстий под выходные транзисторы и клеммник 1,2 мм.


После сверления отверстий желательно залудить все дорожки, тем самым уменьшить их сопротивление и защитить медь от окисления. Затем впаиваются мелкие детали – резисторы, диоды, после чего выходные транзисторы, клеммник, конденсаторы. Согласно схеме, коллекторы выходных транзисторов должны соединяться, на данной плате это соединение происходит путём замыкания «спинок» транзисторов проволокой или радиатором, если он используется. Радиатор требуется ставить в том случае, если схема нагружена на динамик сопротивлением 4 Ома, или если на вход подаётся сигнал большой громкости. В остальных же случаях выходные транзисторы почти не нагреваются и не требуют дополнительного охлаждения.


После сборки обязательно нужно смыть остатки флюса с дорожек, проверить плату на наличие ошибок сборки или замыканий между соседними дорожками.

Настройка и испытания усилителя

После завершения сборки можно подавать питание на плату усилителя. В разрыв одного из питающих проводов нужно включить амперметр, для контроля потребляемого тока. Подаём питание и смотрим на показания амперметра, без подачи на вход сигнала усилитель должен потреблять примерно 15-20 мА. Ток покоя задаётся резистором R6, для его увеличения нужно уменьшить сопротивление этого резистора. Слишком сильно поднимать ток покоя не следует, т.к. увеличится выделение тепла на выходных транзисторах. Если ток покоя в норме, можно подавать на вход сигнал, например, музыку с компьютера, телефона или плеера, подключать на выход динамик и приступать к прослушиванию. Хоть усилитель и прост в исполнении, он обеспечивает весьма приемлемое качество звука. Для воспроизведения одновременно двух каналов, левого и правого, схему нужно собрать дважды. Обратите внимание, что если источник сигнала находится далеко от платы, подключать его нужно экранированным проводом, иначе не избежать помех и наводок. Таким образом, данный усилитель получился полностью универсальным благодаря небольшому потреблению тока и компактным размерам платы. Его можно использовать как в составе компьютерных колонок, так и при создании небольшого стационарного музыкального центра. Удачной сборки.

Недавно обратился некий человек с просьбой собрать ему усилитель достаточной мощности и раздельными каналами усиления по низким, средним и высоким частотам. до этого не раз уже собирал для себя в качестве эксперимента и, надо сказать, эксперименты были весьма удачными. Качество звучания даже недорогих колонок не очень высокого уровня заметно при этом улучшается по сравнению, например, с вариантом применения пассивных фильтров в самих колонках. К тому же появляется возможность довольно легко менять частоты раздела полос и коэффициент усиления каждой отдельно взятой полосы и, таким образом, проще добиться равномерной АЧХ всего звукоусилительного тракта. В усилителе были применены готовые схемы, которые до этого не раз были опробованы в более простых конструкциях.

Структурная схема

На рисунке ниже показана схема 1 канала:

Как видно из схемы, усилитель имеет три входа, один из которых предусматривает простую возможность добавления предусилителя-корректора для проигрывателя винила (при такой необходимости), переключатель входов, предварительный усилитель-тембролок (также трёхполосный, с регулировкой уровней ВЧ/СЧ/НЧ), регулятор громкости, блок фильтров на три полосы с регулировкой уровня усиления каждой полосы с возможностью отключения фильтрации и блок питания для оконечных усилителей большой мощности (нестабилизированный) и стабилизатор для «слаботочной» части (предварительные каскады усиления).

Предварительный усилитель-темброблок

В качестве него была применена схема, не раз проверенная до этого, которая при своей простоте и доступности деталей показывает довольно хорошие характеристики. Схема (как и все последующие) в своё время была опубликована в журнале «Радио» и затем не раз публиковалась на различных сайтах в интернете:

Входной каскад на DA1 содержит переключатель уровня усиления (-10; 0; +10 дБ), что упрощает согласование всего усилителя с различными по уровню источниками сигнала, а на DA2 собран непосредственно регулятор тембров. Схема не капризна к некоторому разбросу номиналов элементов и не требует никакого налаживания. В качестве ОУ можно применить любые микросхемы, применяемые в звуковых трактах усилителей, например здесь (и в последующих схемах) пробовал импортные ВА4558, TL072 и LM2904. Подойдёт любая, но лучше, конечно, выбирать варианты ОУ с возможно меньшим уровнем собственного шума и высоким быстродействием (коэффициентом нарастания входного напряжения). Эти параметры можно посмотреть в справочниках (даташитах). Конечно, здесь вовсе не обязательно применять именно эту схему, вполне можно, например, сделать не трёхполосный, а обычный (стандартный) двухполосный темброблок. Но не «пассивную» схему, а с каскадами усиления-согласования по входу и выходу на транзисторах или ОУ.

Блок фильтров

Схем фильтров, также, при желании можно найти множество, так как публикаций на тему многополосных усилителей сейчас достаточно. Для облегчения этой задачи и просто для примера, я приведу здесь несколько возможных схем, найденных в различных источниках:

— схема, которая была применена мной в этом усилителе, так как частоты раздела полос оказались как раз такие, которые и нужны были «заказчику» — 500 Гц и 5 кГц и ничего пересчитывать не пришлось.

— вторая схема, попроще на ОУ.

И ещё одна возможная схема, на транзисторах:

Как уже писал ваше, выбрал первую схему из-за довольно качественной фильтрации полос и соответствии частот разделения полос заданным. Только на выходах каждого канала (полосы) были добавлены простые регуляторы уровня усиления (как это сделано, например, в третьей схеме, на транзисторах). Регуляторы можно поставить от 30 до 100 кОм. Операционные усилители и транзисторы во всех схемах можно заменить на современные импортные (с учётом цоколёвки!) для получения лучших параметров схем. Никакой настройки все эти схемы не требуют, если не требуется изменить частоты раздела полос. К сожалению, дать информацию по пересчёту этих частот раздела я не имею возможности, так как схемы искались для примера «готовые» и подробных описаний к ним не прилагалось.

В схему блока фильтров (первая схема из трёх) была добавлена возможность отключения фильтрации по каналам СЧ и ВЧ. Для этого были установлены два кнопочных переключателя типа П2К, с помощью которых просто можно замкнуть точки соединения входов фильтров - R10C9 с их соответствующими выходами — «выход ВЧ» и «выход СЧ». В этом случае по этим каналам идёт полный звуковой сигнал.

Усилители мощности

С выхода каждого канала фильтра сигналы ВЧ-СЧ-НЧ подаются на входы усилителй мощности, которые, также, можно собрать по любой из известных схем в зависимости от необходимой мощности всего усилителя. Я делал УМЗЧ по известной давно схеме из журнала «Радио», №3, 1991 г., стр.51. Здесь даю ссылку на «первоисточник», так как по поводу этой схемы существует много мнений и споров по повод её «качественности». Дело в том, что на первый взгляд это схема усилителя класса «B» с неизбежным присутствием искажений типа «ступенька», но это не так. В схеме применено токовое управление транзисторами выходного каскада, что позволяет избавиться от этих недостатков при обычном, стандартном включении. При этом схема очень простая, не критична к применяемым деталям и даже транзисторы не требует особого предварительного подбора по параметрам К тому же схема удобна тем, что мощные выходные транзисторы можно ставить на один теплоотвод попарно без изолирующих прокладок, так как выводы коллекторов соединены в точке «выхода», что очень упрощает монтаж усилителя:

При настройке лишь ВАЖНО подобрать правильные режимы работы транзисторов предоконечного каскада (подбором резисторов R7R8) - на базах этих транзисторов в режиме «покоя» и без нагрузки на выходе (динамика) должно быть напряжение в пределах 0,4-0,6 вольт. Напряжение питания для таких усилителей (их, соответственно, должно быть 6 штук) поднял до 32 вольт с заменой выходных транзисторов на 2SA1943 и 2SC5200, сопротивление резисторов R10R12 при этом следует также увеличить до 1,5 кОм (для «облегчения жизни» стабилитронам в цепи питания входных ОУ). ОУ также были заменены на ВА4558, при этом становится не нужна цепь «установки нуля» (выходы 2 и 6 на схеме) и, соответственно меняется цоколёвка при пайке микросхемы. В результате при проверке каждый усилитель по этой схеме выдавал мощность до 150 ватт (кратковременно) при вполне адекватной степени нагрева радиатора.

Блок питания УНЧ

В качестве блока питания были использованы два трансформатора с блоками выпрямителей и фильтров по обычной, стандартной схеме. Для питания НЧ полосных каналов (левый и правый каналы) - трансформатор мощностью 250 ватт, выпрямитель на диодных сборках типа MBR2560 или аналогичных и конденсаторы 40000 мкф х 50 вольт в каждом плече питания. Для СЧ и ВЧ каналов - трансформатор мощностью 350 ватт (взят из сгоревшего ресивера «Ямаха»), выпрямитель — диодная сборка TS6P06G и фильтр — два конденсатора по 25000 мкф х 63 вольт на каждое плечо питания. Все электролитические конденсаторы фильтров зашунтированы плёночными конденсаторами ёмкостью 1 мкф х 63 вольта.

В общем, блок питания может быть и с одним трансформаторм, конечно, но при его соответствующей мощности. Мощность усилителя в целом в данном случае определяется исключительно возможностями источника питания. Все предварительные усилители (темброблок, фильтры) - запитаны также от одного из этих трансформаторов (можно от любого из них), но через дополнительный блок двуполярного стабилизатора, собранный на МС типа КРЕН (или импортных) или по любой из типовых схем на транзисторах.

Конструкция самодельного усилителя

Это, пожалуй, был самый сложный момент в изготовлении, так как подходящего готового корпуса не нашлось и пришлось выдумывать возможные варианты:-)) Чтобы не лепить кучу отдельных радиаторов, решил использовать корпус-радиатор от автомобильного 4-канального усилителя, довольно больших размеров, примерно такой:

Все «внутренности» были, естественно, извлечены и компоновка получилась примерно такой (к сожалению фотографию соответствующую не сделал):

— как видно, в эту крышку-радиатор установились шесть плат оконечных УМЗЧ и плата предварительного усилителя-темброблока. Плата блока фильтров уже не влезла, поэтому была закреплена на добавленной затем конструкции из алюминиевого уголка (её видно на рисунках). Также, в этом «каркасе» были установлены трансформаторы, выпрямители и фильтры блоков питания.

Вид (спереди) со всеми переключателями и регуляторами получился такой:

Вид сзади, с колодками выходов на динамики и блоком предохранителей (поскольку никакие схемы электронной защиты не делались из-за недостатка места в конструкции и чтобы не усложнять схему):

В последующем каркас из уголка предполагается, конечно, закрыть декоративными панелями для придания изделию более «товарного» вида, но делать это будет уже сам «заказчик», по своему личному вкусу. А в целом, по качеству и мощности звучания, конструкция получилась вполне себе приличная. Автор материала: Андрей Барышев (специально для сайта сайт ).


Всем Привет! В этой статье я буду подробно описывать как изготовить классный усилитель для дома или авто . Усилитель несложный в сборке и настройке, и имеет хорошее качество звучания. Ниже вашему вниманию представлена принципиальная схема самого усилителя.


Схема выполнена на транзисторах и не имеет дефицитных деталей. Питание усилителя двуполярное +/- 35 вольт, при сопротивлении нагрузки в 4 Ома. При подключении 8-ми Омной нагрузки, питание можно увеличить до +/- 42 вольт.

Резисторы R7, R8, R10, R11, R14 - 0,5 Вт; R12, R13 - 5 Вт; остальные 0.25 Вт.
R15 подстроечный 2-3 кОм.
Транзисторы: Vt1, Vt2, Vt3, Vt5 - 2sc945 (на корпусе пишется обычно c945).
Vt4, Vt7 - BD140 (Vt4 можно заменить нашим Кт814).
Vt6 - BD139.
Vt8 - 2SA1943.
Vt9 - 2SC5200.

ВНИМАНИЕ! У транзисторов c945 есть разная цоколевка: ЭКБ и ЭБК. Поэтому перед впайкой нужно проверять мультиметром.
Светодиод обычный, зеленого цвета, именно ЗЕЛЕНОГО! Он здесь не для красоты! И НЕ должен быть сверхъярким. Ну а остальные детали видно на схеме.

И так, Погнали!

Для изготовления усилителя нам понадобятся инструменты :
-паяльник
-олово
-канифоль (желательно жидкий), но можно обойтись и обычным
-ножницы по металлу
-кусачки
-шило
-медицинский шприц, любой
-сверло 0.8-1 мм
-сверло 1.5 мм
-дрель (лучше какую-нибудь мини дрель)
-наждачная бумага
-и мультиметр.

Материалы:
-односторонняя текстолитовая плата размером 10х6 см
-лист тетрадной бумаги
-ручка
-лак для дерева (желательно темного цвета)
-небольшой контейнер
-пищевая сода
-лимонная кислота
-соль.

Список радиодеталей я перечислять не буду, их видно на схеме.
Шаг 1 Готовим плату
И так, нам нужно изготовить плату. Так как лазерного принтера у меня нет (вообще нет ни каково), плату мы будем изготавливать «по старинке»!
Для начала нужно просверлить отверстия на плате для будущих деталей. У кого есть принтер, просто распечатайте эту картинку:


если нет, то тогда нам надо перенести на бумагу разметку для сверловки. Как это сделать вы поймете на фото ниже:


когда будете переводить, не забудьте про размер платы! (10 на 6 см)



вот как то так!
Отрезаем ножницами по металлу нужный нам размер платы.


Теперь прикладываем листок к вырезанной плате и фиксируем скотчем, чтобы не съехала. Далее берем шило и намечаем (по точкам) где будем сверлить.


Можно конечно обойтись без шила и сверлить сразу, но сверло может съехать!


Теперь можно и начать сверловку. Сверлим дырки 0.8 - 1 мм.Как я говорил выше: лучше использовать мини дрель, так как сверло очень тонкое и легко ломается. Я например использую моторчик от шуруповерта.



Дырки под транзисторы Vt8, Vt9 и под провода сверлим сверлом 1.5 мм. Теперь надо зачистить наждачкой нашу плату.


Вот теперь можно и начать рисовать наши дорожки. Берем шприц, стачиваем иголку, чтоб была не острой, набираем лак и вперед!


Подравнивать косяки лучше когда лак уже застынет.


Шаг 2 Травим плату
Для травления плат я использую самый простой и самый дешевый метод:
100 мл перекиси, 4 ч ложки лимонной кислоты и 2 ч ложки соли.


Размешиваем и погружаем нашу плату.



Далее счищаем лак и получается вот так!


Желательно сразу все дорожки покрыть оловом для удобства пайки деталей.


Шаг 3 Пайка и настройка
Паять удобно будет по этой картинке (вид со стороны деталей)


Для удобства с начало впаиваем все мелкие детали, резисторы и прочее.


А потом уже все остальное.


После пайки плату нужно отмыть от канифоли. Отмыть можно спиртом или ацетоном. На крайняк можно даже бензином.


Теперь можно и пробовать включать! При правильной сборке усилитель работает сразу. При первом включении резистор R15 надо вывернуть в сторону максимального сопротивления (меряем прибором). Колонку не подключать! Выходные транзисторы ОБЯЗАТЕЛЬНО на радиатор, через изолирующие прокладки.

И так: включили усилитель, светодиод должен гореть, меряем мультиметром напряжение на выходе. Постоянки нет, значит все хорошо.
Далее нужно установить ток покоя (75-90mA): для этого замкните вход на землю, нагрузку не подключать! На мультиметре поставьте режим 200mV и подсоедините щупы к коллекторам выходных транзисторов. (на фото отмечено красными точками)

Предлагаемый УНЧ является аппаратом среднего качества. При хорошем подборе оконечных транзисторов суммарный коэффициент искажений в электрическом тракте составляет около 0,7…1,2%. Данный УНЧ создает очень малые акустические искажения при взаимодействии с АС. По этой причине даже с суммарными искажениями до 3,5% он явно превосходит по естественности звучания практически любой обычный бестрансформаторный аппарат (включая зарубежные образцы).
Поскольку данный УНЧ хорошо взаимодействует с АС, по субъективному восприятию его отдача приравнивается к отдаче обычного бестрансформаторного УНЧ мощностью около 50 Вт.
Этот УНЧ отвечает трем основным конструктивным требованиям к аппаратам высокой верности воспроизведения:
— имеет двухтактный выходной каскад;
— выходной каскад выполнен по трансформаторной схеме;
— выходное сопротивление УНЧ согласовано с конкретной акустической системой.
Как показала практика, необходимо придерживаться еще одного правила. Глубина ООС в УНЧ должна быть не более 10… 16 дБ. Связано это не с возможностью появления динамических искажений, а с другими факторами, приводящими к потере «свежести» звучания. УНЧ, имеющий очень низкое выходное сопротивление и очень глубокую ООС, является самозамкнутой системой. По этой причине он практически не реагирует на изменение нагрузочного сопротивления. Его ООС решает при этом только одну задачу - в масштабе усиления строго повторять на выходе форму входного сигнала.
Даже самая качественная звуковая головка на частоте резонанса и на частоте около 10 кГц имеет сопротивление в 7…8 раз больше ее полного сопротивления на частоте 400 Гц. Кроме того, головка имеет большое количество выбросов и провалов на характеристике, но гораздо меньших по величине. Все эти выбросы и про¬валы при низком Rвых и бестрансформаторном выходе дают большое количество слабых призвуков, искажающих звуковую картину. Почти все призвуки и искажения имеют акустическое происхождение и на осциллограмме не фиксируются. Говорить об электроакустическом тракте как о чем-то едином при таком положении дел не приходится. Большинство конструкторов для уменьшения количества призвуков идет на очень значительное демпфирование головок. Резкая потеря отдачи при этом требует соответственного увеличения мощности, а это почти полностью восстанавливает уровень и призвуков, и искажений. Круг замыкается.
В предлагаемом усилителе все это происходит не так.
Данный УНЧ, имея в исходном состоянии (без ООС)
Rвых=7…10R.Haгp, обязательно реагирует на изменение нагрузки, т.е. на выбросы и провалы, изменением выходного сигнала. При этом даже неглубокая ООС способствует уменьшению провалов без всякого демпфирования или шунтирования,сохраняя «свежесть» звучания.
Введение неглубокой ООС уменьшает выходное сопротивление до 0,5…2,0 Rнагр, что говорит об открытости системы и в этом состоянии. При таком положении уже можно говорить об электроакустическом тракте. Как и раньше, в «дотранзисторное» время, встает вопрос уменьшения до минимально возможной величины сопротивления соединительных проводов, которое мешает полному участию ООС усилителя в исправлении отдачи АС по звуковому диапазону.
Если учесть все эти особенности, УНЧ не будет иметь практически никаких призвуков, влияющих на тембровую окраску звуковой картины. Это сразу отмечают неопытные слушатели как «бедность» верхнего звукового диапазона даже при хорошем уровне верхов. При сравнительном прослушивании необходимо сначала хорошо вслушаться в звучание трансформаторного УНЧ, а затем слушать бестрансформаторный. Такой порядок очень резко показывает преимущества трансформаторного УНЧ. Настолько резко, что его замечают даже те, кто вообще не обращает внимание на качество.
УНЧ без ООС должен иметь коэффициент усиления, приблизительно на порядок больший необходимого. При небольшой глубине ООС для получения суммарного коэффициента искажений порядка 1,0% необходимо, чтобы исходный УНЧ имел иска¬жения не более 4…6%. Следовательно, подбор транзисторов для выход¬ного каскада должен быть очень тщательным. Линейность в указанных пределах УНЧ должен сохранять во всем диапазоне выходного сигнала.
При выборе выходных транзисторов для схем с общим эмиттером (ОЭ) необходимо обязательно знать фор му зависимости h21э от Iк. Посмотрим на рис.1, где показана такая зависимость для транзистора КТ802А (кривая 1). Максимум значения п21э соответствует току порядка 3,5 А. За этой точкой начинается спад. Для того чтобы знать, в диапазоне каких токов можно использовать транзистор, нужно учитывать еще зависимость п21э от UK. В принципе, эта зависимость для подавляющего большинства мощных транзисторов имеет подъем разной крутизны с ростом UK.
В реальном УНЧ большему току всегда соответствует меньшее UK. Это означает, что если нанести зависимость h21э от UK на характеристику h21э от 1к, она имеет наклон, обратный по отношению к участку прямолинейного роста h21 (кривая 2). Во многих справочниках форма зависимости h21э от 1к есть, а зависимости h21э от UK нет практически нигде. Для исключения ошибки при выборе типа транзисторов нужно учитывать только прямолинейную часть подъема характеристики. Ток, при котором начинается изгиб характеристики, нужно считать максимальным линейным током данного типа. Зная максимальный линейный ток и допустимое напряжение на коллекторе, легко определить, какую мощность можно снимать с данной пары транзисторов. С ростом температуры кривая зависимости h21э от 1к начинает изгибаться при меньших значениях 1к. По этой причине площадь радиаторов выходных транзисторов должна быть в 1,5 раза большей, чем в обычных бестрансформаторных УНЧ.
Отбор пар транзисторов по величине h21э необходимо делать не менее чем при двух значениях тока. Для УНЧ средней мощности - на токах 0,3 А и 1,0 А. Лучше, если разница в усилении транзисторов не превышает 7…10%. Не все любители имеют возможность произвести замер h21э при усилении переменного тока. Отбирая транзисторы по параметрам на постоянном токе, следует принимать при расчетах величину на 30% меньшую.
Не менее важное значение имеет форма входной характеристики транзисторов. От нее зависит, в каком режиме должен работать возбуждающий каскад. На рис.2 приведена входная характеристика транзистора КТ802А. Такая характеристика свойственна довольно многим типам мощных кремниевых транзисторов. С этими транзисторами при раскачке их генератором напряжения, т.е. источником с очень низким выходным сопротивлением, можно получить на выходе сравнительно неплохую линейность. Однако гораздо лучшие результаты можно получить, если возбуждающий каскад работает в «умягченном» промежуточном режиме. Такой режим просто осуществляется на практике.
Схема предлагаемого УНЧ приведена на рис.3. Выбор довольно мощного возбуждающего каскада и отказ от составных транзисторов не случаен. Сделано это для сведения к минимуму искажений при переходных процессах, а также искажений, свойственных работе выходных транзисторов в классе Б.
Схема во многом заимствована из [ 1 ]. Бестрансформаторный выход заменен на трансформаторный. Емкость конденсатора фильтра в источнике увеличена до 11000 мкФ и не помешает увеличить ее до 15000 мкФ. В связи с проявлением индуктивности некоторых типов электролитических конденсаторов лучше использовать параллельное соединение нескольких, меньших по емкости конденсаторов.
Схема стабилизатора напряжения может быть любой. Главное, чтобы он мог длительное время работать при токе нагрузки не менее 350 мА и при этом имел малый уровень пульсаций.

Особое внимание необходимо уделить изготовлению выходного трансформатора (Т2). Автор применил железо Э-310 Ш20х40 с окном 20x50мм. Первичная обмотка состоит из четырех секций по 60 витков. Каждая секция занимает точно слой, если мотать проводом диаметром 0,68 мм. Допускается некоторое уменьшение толщины провода. Вторичная обмотка состоит из шести секций по 75 витков провода диаметром 0,56 мм, соединенных параллельно. Каждая секция также занимает слой. Схема соединений секций первичной обмотки приведена на рис.3, а расположение на катушке - на рис.4. Такая система намотки дает наибольшую плотность, что очень важно для получения хорошей АЧХ. Трансформатор имеет хорошую симметричность обмоток как по сопротивлению постоянному току, так и по индуктивности.
Если усилитель предполагается эксплуатировать с АС сопротивлением 4 Ом, то секции вторичной обмотки должны содержать по 53 витка, а при АС с сопротивлением 16 Ом - по 106 витков. Следует особо подчеркнуть необходимость строго одинакового числа витков в каждой секции вторичной обмотки. Для выполнения этого условия выводы начала каждой секции должны располагаться строго друг, над другом. Таким же образом на другой щечке следует располагать выводы концов.
Между слоями (секциями) нужно прокладывать 2 слоя чертежной кальки или подобной бумаги. Толщина намотки составляет около 11 мм.
Согласующий трансформатор (Т1) выполнен на железе Ш12х16. Качество железа особого значения не имеет.
Первичная обмотка содержит 400 витков провода ПЭЛ 0,27, а вторичная располагается в двух обособленных секциях по 315 витков провода ПЭЛ 0,51. Обе секции вторичной обмотки следует размещать между половинами первичной.
Для большей симметрии лучше вторичные обмотки мотать в 2 провода. Это делать можно в том случае, если есть опыт такой намотки без
опасных перехлестов витков при переходе на верхний слой.
Силовой трансформатор блока питания намотан на железе от приемника «Фестиваль». Сетевая об-мотка содержит 770 витков провода диаметром 0,51 мм. Обмотка питания стабилизатора имеет 122 витка провода диаметром 1,0 мм, а обмотка нестабилизированного выпрямителя - столько же витков провода 1,5 мм. Для питания схемы задержки наматывается 38 витков провода 0,51 мм. Для сигнальных ламп (3,5 В) мотается 12 витков проводом 0,68 мм. Экранная обмотка содержит один слой провода 0,25 мм.
Если в усилителе применены элементы хорошего качества, наладка его хоть и длительна, но не сложна.
Выходные транзисторы с h21э<22 применять не рекомендуется. Дело в том, что при этом необходимо увеличенное напряжение возбуждения, приводящее к нехватке усиления предварительных каскадов и даже появлению искажений в возбуждающем каскаде. Очень хорошие результаты дают транзисторы КТ908. Среди них часто попадаются пары с Ь21э=40…60. У транзисторов КТ805 перегиб на зависимости Ь21э от 1к начинается раньше, чем у КТ802 и КТ908. Однако это может сказаться только на самых больших громкостях, где чувствительность слуха уже притуплена. Все транзисторы должны быть в металлостеклянном корпусе.
Перед подачей питания резисторы Rl 1 и R12 устанавливаются в положение минимального сопротивления. Подав питание, проверяют режимы VT1 и VT2. При отклонении на 10% и менее подгонку делать не нужно. Для установки начальных токов выходных транзисторов необходимо включить миллиамперметр в разрыв коллекторной цепи. Нельзя включать прибор вместо R13 и R14, поскольку после их установки на место токи сильно меняются.
Ток покоя VT3 и VT4 устанавливается изменением сопротивлений Rl 1 и R12 равным 40 мА.
На время подбора R15 его можно заменить на переменное сопротивление 1,5 кОм. Уменьшать его необходимо до тех пор, пока нижние частоты не начинают хорошо прорабатываться. Обычно это сопровождается уменьшением усиления в 3…3,5 раза. Увеличением громкости уровень выхода необходимо поддерживать таким, на котором обычно производится прослушивание. Увеличение глубины ООС следует производить осторожно, прислушиваясь к тому, не началось ли глушение «свежести» звучания. Дальнейшее углубление ООС уже ничего не улучшает в звучании.
Чувствительность оконечного УНЧ после наладки составляет 1,2…2,0 В. При подборе глубины ООС может оказаться, что уровень верхов неприятно возрастает. Тогда, уменьшив С5 до величины 0,25 мкФ или 0,15 мкФ, можно сместить подъем в сторону более высоких частот и этим уменьшить выброс характеристики.

Наиболее ярко естественность звучания данного УНЧ проявляется при его работе на АС с малой степенью компрессии, т.е. с относительно большим объемом ящика.
Предварительный усилитель может быть любым. Важно, чтобы он дал необходимое усиление и возможность регулировки тембра. В этом отношении удобны предварительные усилители на микросхеме. Уровень выхода таких схем легко меняется в цепи ООС.
Усилитель не требует защиты оконечных транзисторов от короткого замыкания на выходе и защиты АС от пробоя оконечных транзисторов. Однако схему задержки включения АС ввести не помешает.
Данный УНЧ, как и многие другие трансформаторные, малокритичен к отсутствию тонкомпенсации. Получается это из-за того, что с уменьшением громкости уменьшается напряжение звуковой частоты на обмотках согласующего и выходного трансформаторов. Это приводит к росту числа витков на вольт, что расширяет полосу в сторону нижних частот и создает впечатление роста отдачи на этих частотах.
Может случиться, что при наладке появляется нежелательный подъем характеристики на нижних частотах. Избавиться oт этого можно просто уменьшением переходного конденсатора С1 на входе усилителя. Это чаще всего случается при использовании закрытых АС. Если Вы администратор сайта, самый быстрый способ исправить эту ошибку — воспользоваться Технической проверкой сайта в панели управления хостингом.

После освоения азов электроники, начинающий радиолюбитель готов паять свои первые электронные конструкции. Усилители мощности звуковой частоты, как правило самые повторяемые конструкции. Схем достаточно много, каждая отличается своими параметрами и конструкцией. В этой статье будут рассмотрены несколько простейших и полностью рабочих схем усилителей, которые успешно могут быть повторены любым радиолюбителем. В статье не использованы сложные термины и расчеты, все максимально упрощено, чтобы не возникло дополнительных вопросов.

Начнем с более мощной схемы.
Итак, первая схема выполнена на известной микросхеме TDA2003. Это монофонический усилитель с выходной мощностью до 7 Ватт на нагрузку 4 Ом. Хочу сказать, что стандартная схема включения этой микросхемы содержит малое количество компонентов, но пару лет назад мною была придумана иная схема на этой микросхеме. В этой схеме количество комплектующих компонентов сведено к минимуму, но усилитель не потерял свои звуковые параметры. После разработки данной схемы, все свои усилители для маломощных колонок стал делать именно на этой схеме.

Схема представленного усилителя имеет широкий диапазон воспроизводимых частот, диапазон питающих напряжений от 4,5 до 18 вольт (типовое 12-14 вольт). Микросхему устанавливают на небольшой теплоотвод, поскольку максимальная мощность достигает до 10 Ватт.

Микросхема способна работать на нагрузку 2 Ом, это значит, что к выходу усилителя можно подключать 2 головки с сопротивлением 4 Ом.
Входной конденсатор можно заменить на любой другой, с емкостью от 0,01 до 4,7 мкФ (желательно от 0,1 до 0,47 мкФ), можно использовать как пленочные, так и керамические конденсаторы. Все остальные компоненты желательно не заменять.

Регулятор громкости от 10 до 47 кОм.
Выходная мощность микросхемы позволяет применять его в маломощных АС для ПК. Очень удобно использовать микросхему для автономных колонок к мобильному телефону и т.п.
Усилитель работает сразу после включения, в дополнительной наладке не нуждается. Советуется минус питания дополнительно подключить к теплоотводу. Все электролитические конденсаторы желательно использовать на 25 Вольт.

Вторая схема собрана на маломощных транзисторах, и больше подойдет в качестве усилителя для наушников.

Это наверное самая качественная схема такого рода, звук чистый, чувствуются весь частотный спектр. С хорошими наушниками, такое ощущение, что у вас полноценный сабвуфер.

Усилитель собран всего на 3-х транзисторах обратной проводимости, как самый дешевый вариант, были использованы транзисторы серии КТ315, но их выбор достаточно широк.

Усилитель может работать на низкоомную нагрузку, вплоть до 4-х Ом, что дает возможность, использовать схему для усиления сигнала плеера, радиоприемника и т.п. В качестве источника питания использована батарейка типа крона с напряжением 9 вольт.
В окончательном каскаде тоже применены транзисторы КТ315. Для повышения выходной мощности можно применить транзисторы КТ815, но тогда придется увеличить напряжение питания до 12 вольт. В этом случае мощность усилителя будет достигать до 1 Ватт. Выходной конденсатор может иметь емкость от 220 до 2200 мкФ.
Транзисторы в этой схеме не нагреваются, следовательно, какое-либо охлаждение не нужно. При использовании более мощных выходных транзисторов, возможно, понадобятся небольшие теплоотводы для каждого транзистора.

И наконец - третья схема. Представлен не менее простой, но проверенный вариант строения усилителя. Усилитель способен работать от пониженного напряжения до 5 вольт, при таком случае выходная мощность УМ будет не более 0,5 Вт, а максимальная мощность при питании 12 вольт достигает до 2-х Ватт.

Выходной каскад усилителя построен на отечественной комплементарной паре. Регулируют усилитель подбором резистора R2. Для этого желательно использовать подстроечный регулятор на 1кОм. Медленно вращаем регулятор до тех пор, пока ток покоя выходного каскада не будет 2-5 мА.

Усилитель не обладает высокой входной чувствительностью, поэтому желательно перед входом применить предварительный усилитель.

Немало важную роль в схеме играет диод, он тут для стабилизации режима выходного каскада.
Транзисторы выходного каскада можно заменить на любую комплементарную пару соответствующих параметров, например КТ816/817. Усилитель может питать маломощные автономные колонки с сопротивлением нагрузки 6-8 Ом.

Список радиоэлементов

Обозначение Тип Номинал Количество Примечание Магазин Мой блокнот
Усилитель на микросхеме TDA2003
Аудио усилитель

TDA2003

1 В блокнот
С1 47 мкФ х 25В 1 В блокнот
С2 Конденсатор 100 нФ 1 Пленочный В блокнот
С3 Электролитический конденсатор 1 мкФ х 25В 1 В блокнот
С5 Электролитический конденсатор 470 мкФ х 16В 1 В блокнот
R1 Резистор

100 Ом

1 В блокнот
R2 Переменный резистор 50 кОм 1 От 10 кОм до 50 кОм В блокнот
Ls1 Динамическая головка 2-4 Ом 1 В блокнот
Усилитель на транзисторах схема №2
VT1-VT3 Биполярный транзистор

КТ315А

3 В блокнот
С1 Электролитический конденсатор 1 мкФ х 16В 1 В блокнот
С2, С3 Электролитический конденсатор 1000 мкФ х 16В 2 В блокнот
R1, R2 Резистор

100 кОм

2 В блокнот
R3 Резистор

47 кОм

1 В блокнот
R4 Резистор

1 кОм

1 В блокнот
R5 Переменный резистор 50 кОм 1 В блокнот
R6 Резистор

3 кОм

1 В блокнот
Динамическая головка 2-4 Ом 1 В блокнот
Усилитель на транзисторах схема №3
VT2 Биполярный транзистор

КТ315А

1 В блокнот
VT3 Биполярный транзистор

КТ361А

1 В блокнот
VT4 Биполярный транзистор

КТ815А

1 В блокнот
VT5 Биполярный транзистор

КТ816А

1 В блокнот
VD1 Диод

Д18

1 Или любой маломощный В блокнот
С1, С2, С5 Электролитический конденсатор 10 мкФ х 16В 3
Понравилось? Лайкни нас на Facebook