Лазерный газоанализатор. Лазерный оптико-акустический газоанализатор внутрирезонаторного типа Лазерный газоанализатор

Высокочувствительный лазерный газоанализатор предназначен для анализа содержания примесных газов в воздушных пробах. Основные элементы газоанализатора: волноводный СО 2 -лазер, резонансная оптико-акустическая ячейка, а также компьютер, в библиотеке которого содержатся сведения о линиях поглощения 37 газов. Представлены сведения о пределах обнаружения газов разработанным газоанализатором. Предел обнаружения по аммиаку с погрешностью 15% составляет 0.015 ppb.

Необходимость постоянного контроля за содержанием в воздухе большого числа загрязнений на значительных территориях при разумных затратах средств и труда ставит задачу оснащения службы экологического контроля газоанализаторами, удовлетворяющими следующим требованиям: 1) порог обнаружения на уровне предельно допустимых концентраций анализируемых веществ; 2) высокая избирательность по отношению к посторонним веществам; 3) многокомпанентность анализа; 4) высокое быстродействие (малое время цикла измерений при заборе одной пробы), обеспечивающее возможность работы в движении и сравнительно быструю реакцию на превышение заданного уровня концентрации; 5) непрерывность измерений в течение 2-4 ч для определения размеров загрязненной области.

Существующие методы детектирования газов можно условно разделить на традиционные (неспектроскопические) и оптические (спектроскопические). В работе перечислены достоинства и недостатки основных традиционных методов с точки зрения их применения для анализа газовых примесей сложного состава в воздухе.

Спектроскопические методы, быстрое развитие которых определяется уникальными характеристиками лазеров, позволяют устранить основные недостатки традиционных приборов и обеспечить необходимое быстродействие, чувствительность, селективность и непрерывность анализа. В большинстве случаев для детектирования загрязнения воздуха спектроскопическими методами используется средняя и.к.-область спектра, где сосредоточены основные колебательные полосы подавляющего большинства молекул. Видимая и у.ф.-области в этом отношении менее информативны.

Особое место в семействе и.к.-лазерных газоанализаторов занимают приборы с СО 2 -лазера-ми. Эти лазеры долговечны, надежны и просты в эксплуатации и позволяют детектировать более 100 газов.

Ниже описан газоанализатор (макетный образец), удовлетворяющий вышеперечисленным требованиям. В качестве источника излучения используется волноводный СО 2 -лазер, чувствительным элементом является резонансная оптико-акустическая ячейка (р.о.а.я.). В основе оптико-акустического метода лежит регистрация звуковой волны, возбуждаемой в газе при поглощении модулированного по амплитуде лазерного излучения в р.о.а.я. Давление звуковой волны, пропорциональное удельной поглощенной мощности, регистрируется микрофоном. Структурная схема газоанализатора приведена на рис. 3,1. Модулированное излучение СО 2 -ла-зера попадает на узел перестройки длины волны. Этот узел представляет собой дифракционную решетку, позволяющую перестраивать длину волны излучения в диапазоне 9.22-10.76 мкм и получать 84 лазерные линии. Далее излучение через систему зеркал направляется в чувствительный объем р.о.а.я., где регистрируются те газы, которые поглощают поступающее в нее излучение. Энергия поглощенного излучения увеличивает температуру газа. Выделившееся на оси ячейки тепло путем, главным образом, конвекции передается стенкам ячейки. Модулированное излучение вызывает соответствующее изменение температуры и давления газа. Изменение давления воспринимается мембраной емкостного микрофона, что приводит к появлению периодического электрического сигнала, частота которого равна частоте модуляции излучения.

Рисунок3,1. Структурная схема газоанализатора

На рис.3, 2 представлен эскиз внутренней полости р.о.а.я. Он образован тремя цилиндрическими активными объемами: симметрично расположенными объемами 1 и 2 диаметром 20 мм и внутренним объемом 3 диаметром 10 мм. Входное 4 и выходное 5 окна изготовлены из материала BaF 2 . Микрофон установлен в нижней части ячейки и соединен с активным объемом отверстием 6 диаметром 24 мм.


Рисунок 3,2 Внутренняя полость резонансной оптико-акустической ячейки. 1, 2 - внешние объемы, 3 - внутренний объем. 4, 5 - входное и выходное окна, 6 - отверстие микрофона

Оптический резонанс" обусловленный поглощением лазерного излучения газом, при нормальных условиях возникает при частоте модуляции излучения 3.4 кГц, а фоновый сигнал, обусловленный поглощением излучения окнами р.о.а.я., максимален при частоте 3.0 кГц. Добротность в обоих случаях составляет >20. Такая конструкция р.о.а.я. обеспечивает высокую чувствительность газоанализатора и позволяет подавить вклад фонового сигнала с помощью частотно- и фазово-селективного усилителя. В то же время р.о.а.я. нечувствительна к внешним акустическим шумам. Амплитуда электрического сигнала при измерении концентрации определяется формулой

где K -- постоянная ячейки, -- мощность излучения лазера, б - коэффициент поглощения излучения газом, С - концентрация газа.

Перед измерениями проводится калибровка газоанализатора с использованием поверочного газа (СО2) c известной концентрацией.

Измерение амплитуды осуществляется с помощью платы а.ц.п., входящей в состав компьютера фирмы Advantech. Этот же компьютер используется для управления узлом перестройки длины волны и расчета концентраций измеряемых газов.

Разработанная программа обработки информации предназначена для качественного и количественного анализа смеси газов по спектру поглощения лазерного излучения СО 2 лазера. Исходной информацией для программы является измеренный спектр поглощения анализируемой газовой смеси. Пример спектра поглощения азота, построенный в единицах оптической толщины, приведенной рис3,3а, а на рис.3,3б представлен пример спектра поглощении с малой добавкой аммиака.

Рисунок 3,3 Спектры поглощения: а - азота при нормальном атмосферном давлении, б - смеси азот-аммиак.

Оптическая толщина, где

См -1 атм -1 - коэффицент поглощения j-го газа на i-ой лазерной линии, С i , атм - концентрация j-го газа, i

Библиотека возможных компонент содержит значения коэффициентов поглощения и представляет собой матрицу размерностью {N x m}. Число представленных в библиотеке газов т = 37, максимальное число анализируемых лазерных линий N - 84 (по 21 линии в каждой ветви СO 2 -лазера).

В процессе анализа спектра газовой смеси, образованного перекрывающимися линиями поглощения входящих в состав смеси газов, программа отбирает из библиотеки те компоненты, которые позволяют наилучшим образом описать спектр смеси. Одним из основных критериев поиска наилучшего набора компонент служит величина среднеквадратичного отклонения между экспериментальным и найденным в результате итераций спектром поглощения:

Алгоритм решения обратной задачи - поиска концентраций по известному спектру поглощения - построен с помощью метода исключения Гаусса и метода регуляризации по Тихонову, и основные трудности его реализации связаны с оценкой устойчивости решения (элементы матрицы коэффициентов поглощения, так же как и свободные члены, известны лишь приближенно), выбором параметра регуляризации и нахождением критериев прекращения итерационного процесса.

В таблице представлены расчетные сведения о пределах обнаружения некоторых газов описываемым газоанализатором:

Предел обнаружения, ppb

Предел обнаружения, ppb

Акролеин

Монометил гидразин

Перхлорэтилен

t-бутанол

Пропанол

Винил хлорид

Гексафторид серы

Трихлорэтилен

Гексахлорбутадиен

Гидразин

Диметилгидразин

1.1 -дифторэтилен

Изопропан

Метилхлороформ

Этилацетат

Метил этил кетон

Основные рабочие характеристики газоанализатора: количество одновременно измеряемых газов - до 6; время измерений 2 мин; предел обнаружения по углекислому газу 0,3 ррт: предел обнаружения по аммиаку 0.015 ppb: диапазон измерений по углекислому газу 1 ррт -10%; диапазон измерений по аммиаку 0.05 ppb-5 ррт; погрешность измерений 15%; напряжение питания 220В ±10%. [ 1]

Характеристика

Прибор предназначен для проведения оперативного газоанализа атмосферного воздуха методом оптико-акустической лазерной спектроскопии

Принцип действия газоанализатора основан на генерации акустических волн в воздухе при взаимодействии модулированного лазерного луча с молекулами газовой примеси, поглощающей лазерное излучение на заданной длине волны. Акустические волны преобразуются микрофоном в электрические сигналы, пропорциональные концентрации поглощающего газа. Перестраивая длину волны лазера и используя известные спектральные данные о коэффициентах поглощения различных газов, можно определить состав детектируемой газовой примеси.

Отличительной особенностью данного газоанализатора является совмещение в единой конструкции перестраиваемого волноводного СО2-лазера и прокачного оптико-акустического детектора (ОАД) дифференциального типа. ОАД располагается внутри лазерного резонатора и образует единую конструкцию с лазером. Благодаря этому уменьшаются потери на оптических элементах, повышается мощность внутри рабочего канала ОАД и жесткость всей конструкции. В газоанализаторе используется автоматически перестраиваемый по линиям волноводный СО2-лазер с высокочастотным (ВЧ) возбуждением, в котором импульсно-периодический режим генерации задается модуляцией мощности ВЧ-генератора, что дает возможность оптимизировать энергопотребление путем регулировки скважности импульсов возбуждения. В конструкции используемого ОАД дифференциального типа имеется два резонансных акустических канала, в

которых формируются противофазные акустические волны, что позволяет при введении соответствующей обработки свести к минимуму шумыпри протекании воздуха через каналы.

Данные особенности прибора являются уникальными и в совокупности обеспечивают предельно высокую для оптико-акустических устройств чувствительность детектирования, низкий уровень аппаратурных шумов и относительно малое общее энергопотребление.

Газоанализатор способен регистрировать минимальные коэффициенты поглощения газовых примесей в атмосфере в потоке газа на уровне ~ 5 × 10-10 см-1 с высоким быстродействием, присущим оптическим методам газоанализа. Благодаря этим качествам, а также возможности перестройки длины волны лазерного излучения в области 9,3÷10,9 мкм газоанализатор позволяет проводить в реальном времени измерения малых концентраций атмосферных и антропогенных газов (на уровне 1 ppb и менее), таких как С2

Н4, NH3, O3, C6, SO2, SF6, N2

O, CH3, CH3и т.д.,

включая парыряда взрывчатых и отравляющих веществ (всего около 100 веществ).

Указанные свойства позволяют применять прибор для контроля концентраций химических молекулярных соединений в атмосферном воздухе и технологических процессах, проводить анализ выдыхаемого воздуха с целью выявления различных заболеваний и т.д.

Применение эффекта

Очевидные преимущества ОА-метода в сочетании с использованием достаточно мощных непрерывных перестраиваемых по частоте лазеров делают его особенно привлекательным для решения задач, требующих измерения слабого поглощения излучения молекулярными газами. В первую очередь это касается задач газового анализа при малых и сверхмалых концентрациях молекул в среде.

Статья в тему

Параметрический синтез антенны базовой станции по заданным требованиям к диаграмме направленности
Антенной называется радиотехническое устройство, предназначенное для изучения или приема электромагнитных волн. Антенна является одним из важнейших элементов любой радиотехнической системы, связанной с излучением или приемом радиоволн. К таким системам относят: системы радиосвязи, ра...

Действие лазерного газоанализатора Yokogawa TDLS200 основывается на методе диодной лазерной абсорбционной спектроскопии.

Этот прибор характеризуется высокой селективностью и долговременной стабильностью, обеспечивает быстрый «in-situ» (непосредственно в трубе) анализ газов с коррозионно-агрессивными компонентами или высокой температурой. Каков принцип работы этого прибора и где он находит свое применение?

Лазерный газоанализатор использует метод абсорбционной спектроскопии на основе перестраиваемого лазерного диода (TDLAS) и обладает возможностью измерения концентрации в пробе газа с высокой селективностью и без непосредственного контакта - только путем облучения пробы газа излучением перестраиваемого лазерного диода. Таким образом, могут выполняться быстрые и точные «in-situ» измерения в газоходах техпроцесса при различных условиях. Например, измерения могут проводиться при температуре вплоть до 1500°C, а также в средах с пульсирующим давлением. Лазерный газоанализатор Yokogawa TDLS200 также может проводить измерения при наличии коррозионно-агрессивных или токсичных газов. Точные аналитические сигналы, формируемые анализатором, имеют минимальное время отклика, что способствует увеличению выхода продукта, повышает энергоэффективность и безопасность в различных производственных технологических процессах. Простота конструкции (отсутствие движущихся деталей и компонентов с ограниченным сроком службы) гарантирует эксплуатацию и управление практически без технического обслуживания.

Лазерный газоанализатор Yokogawa TDLS200 представляет собой новый тип лазерных газоанализаторов, используемых для промышленных измерений. Применение метода интегрирования площади пика устраняет погрешности измерения, вызванные изменением давления и присутствием других газов в пробе. Он также позволяет выполнять точное определение концентрации компонентов газа даже при одновременном изменении его температуры и других показателей. Настоящая статья представляет обзор лазерного газоанализатора TDLS200, его функций и принципа измерений, а также рассматривает примеры его применения.

Газоанализатор имеет блок излучения и блок детектирования, которые обычно размещаются напротив друг друга на противоположных сторонах (поперёк) газохода, через который проходит поток газа техпроцесса. Подобный вариант применяется для газоходов шириной до 20 м.

Оптические окна отделяют внутренние части анализатора от измеряемой среды. Излучение полупроводникового лазера проходит через оптическое окно блока излучения, измеряемый газ, оптическое окно блока детектирования и достигает фотодетектора. Фотодетектор регистрирует лазерный луч и преобразует его энергию в электрический сигнал. Вычислительное устройство блока излучения определяет спектр поглощения измеряемого компонента, вычисляет площадь пика спектра, преобразует её в концентрацию компонента и выводит в качестве аналогового сигнала 4…20 мА.

Механизм юстировки имеет гофрированную конструкцию, которая позволяет упростить регулировку угла оптической оси, сохраняя герметичность трубопровода, что особенно важно для технологических процессов в промышленности. Соединение блока излучения и блока детектирования с помощью устройства регулировки оптической оси упрощает настройку оптической оси не только для стандартной конфигурации, (два блока размещаются с двух сторон трубы, как показано на рисунке 1), но и для других вариантов установки. Данное техническое решение позволяет выбрать тот способ инсталляции прибора, который наилучшим образом подходит для измеряемых компонентов и технологического оформления процесса, и в то же время гарантирует оптимальные условия измерений.

TDLS200 использует метод диодной лазерной абсорбционной спектроскопии (TDLAS). Метод основан на измерении спектра поглощения излучения (инфракрасная/ближняя инфракрасная область), свойственного молекулам вещества вследствие колебательной и вращательной энергий перехода молекул в измеряемом компоненте. Источником излучения для формирования спектра служит полупроводниковый лазер с крайне узкой шириной спектральной линии. Оптический спектр поглощения, свойственный для основных молекул, таких как O2, NH3, H2O, CO и CO2, находится в области от инфракрасной до ближней инфракрасной. Измерение величины поглощенного излучения при определенной длине волны (спектральная абсорбционная способность) делает возможным вычисление концентрации измеряемого компонента.

В отличие от обычных спектрометров низкого разрешения, TDLS200 использует лазерный луч с крайне узкой шириной спектральной линии. Излучателем служит перестраиваемый лазерный диод, длина волны излучения которого может быть изменена путем настройки температуры лазера и тока возбуждения. Это позволяет выполнять измерения одиночного пика поглощения из нескольких, присутствующих в спектре. Таким образом, как показано на рисунке 6, для измерения может быть выбран один пик поглощения, который не подвергается интерференции со стороны других газов.

Благодаря высокой селективности по длине волны и отсутствию интерференции со стороны других компонентов в газовой смеси, нет необходимости в дополнительной пробоподготовке, что позволяет использовать TDLS200 «in-situ» (непосредственно в процессе).

TDLS200 измеряет обособленный спектр поглощения компонента газовой смеси, свободный от воздействия со стороны интерферирующих компонентов. Измерение проводится с помощью развёртки длины волны перестраиваемого лазерного диода вдоль одиночного пика поглощения измеряемого компонента.

Хотя спектр поглощения, измеряемый TDLS200, изолирован от интерферирующих компонентов, форма спектра может изменяться (эффект расширения) в зависимости от температуры газа, давления газа, присутствующих в газовой смеси сторонних компонентов. Для проведения измерений в подобных условиях требуется выполнение компенсации.

Газоанализатор TDLS200 осуществляет развёртку длины волны излучения полупроводникового лазера вдоль линии поглощения измеряемого компонента и вычисляет его концентрацию по спектральной области поглощения методом интегрирования площади пика.

Газоанализатор Yokogawa TDLS200 благодаря возможности быстрого измерения «in-situ» (непосредственно в трубопроводе) может с успехом применяться в действующих техпроцессах как для их высокоскоростного регулирования, когда необходимые для контроля процесса сигналы, содержащие показания концентраций компонента, подаются прямо на РСУ, так и для управления состояниями техпроцесса в реальном времени. Таким образом, TDLS200 может способствовать оптимизации показателей различных промышленных техпроцессов. В этом разделе мы рассмотрим измерение остаточной концентрации NH3 в дымовом газе. Обратите внимание, что применение TDLS200 для оптимизации процесса горения было описано в другой статье компании Yokogawa(3). За подробной информацией обратитесь к этому отчету.

Аммиак (NH3) вводится в дымовой газ с целью удаления NOx (очистка отходящих газов от окислов азота), повышения эффективности пылеуловителей и предотвращения коррозии. Избыток NH3 повышает эксплуатационные расходы и количество остаточного NH3, приводя к появлению гнилостного запаха. Таким образом, количество NH3 в отходящем газе необходимо измерять, контролировать и регулировать. Например, в аппаратуре очистки отходящего газа печи для сжигания от окислов азота применяется процесс DeNOx ИКВ (избирательное каталитическое восстановление), при котором NOx восстанавливается до N2 и H2O с помощью инжекции NH3 и селективного катализа процесса восстановления, а остаточная концентрация NH3 (порядка ppm) в дымовых газах измеряется в реальном времени.

Традиционные приборы для измерения концентрации NH3, использующие косвенные методы измерения NOx (хемилюминесцентный анализ и ионно-электродный метод), имеют большое время отклика, требуют установки пробоотборной линии, включая обогреваемые трубы, чтобы избежать адгезии NH3, и, соответственно, большие затраты на техническое обслуживание таких сложных измерительных систем. С другой стороны, как показано на рисунке 8, лазерный газоанализатор TDLS200 устанавливается прямо в трубопровод техпроцесса и измеряет NH3 напрямую, что значительно уменьшает время отклика и упрощает техобслуживание. Вдобавок, аналитический сигнал концентрации NH3 с быстрым откликом может быть задействован для регулирования и оптимизации инжекции NH3.

Высокая селективность, малое время отклика, простота обслуживания, достигнутые благодаря используемой технологии измерений и конструктивному исполнению анализатора, обеспечивают возможность его применения в широком диапазоне технологических процессов. Варианты применения включают не только измерение NH3, рассмотренное в этой статье, но и определение содержания CO и O2 в оптимизации процессов горения, измерение малого количества воды на установках электролиза и др. Применение таких газоанализаторов может внести значительный вклад в сохранение окружающей среды и снижение эксплуатационных расходов, благодаря его применению для управления технологическими процессами, а не только лишь с целью мониторинга.

Казуто Тамура,

Юкихико Такаматсу,

Томояки Нанко,

Лазерный газоанализатор «ЛГАУ-02» предназначен для измерения концентрации газообразных углеводородов в воздухе, прокачиваемом через газовую кювету прибора. Газоанализатор может использоваться как в автономном варианте, так и в составе мобильных авто- и авиалабораторий. В состав комплекса входят:

  • лазерный газоанализатор «ЛГАУ-02»;
  • выносной блок управления с источниками звуковых сигналов;
  • дополнительно: персональный компьютер с установленным программным обеспечением.


Рис. 1

Схема организации автолаборатории представлена для поиска утечек из подземных газопроводов представлена на Рис. 1 В авиалаборатории, можно обойтись без побудителя расхода, обеспечив эффективный воздухозабор напором забортного воздуха, а на ручной тележке можно вместо приземного пробоотборного устройство использовать выносное.

Достоинства газоанализатора «ЛГАУ-02» проявляются при решении задач:

  • обнаружения утечек из подземных газопроводов городских газовых сетей, а также из магистральных и распределительных трубопроводов с помощью автолаборатории, осуществляющей измерения на ходу;
  • обнаружения утечек из подземных, наземных и воздушных газопроводов с помощью ручной тележки, осуществляющей измерения на ходу;
  • обнаружения утечек из магистральных газопроводов с помощью авиалаборатории;
  • измерения вариаций метанового (углеводородного) фона на больших площадях (углеводородная съемка) помощью авиалаборатории с целью поиска месторождений нефти и газа и экологического контроля состояния атмосферы.


Рис. 2

  • Программное обеспечение позволяет вести архивы. Также ведется журнал событий.

Функциональные возможности комплекса

  • Газоанализатор выполнен в виде оптико-электронного измерительного блока в пыле- и брызгозащищенном корпусе по IP54 и комплектуется выносным пультом управления, снабженным аналоговым индикатором, единственной кнопкой установки нуля и двухступенчатой звуковой и световой сигнализацией повышенных концентраций с регулируемыми порогами срабатывания. Простота монтажа и обслуживания прибора, высокая надежность, небольшие габариты и энергопотребление позволяют использовать его в автономном режиме, на ручных тележках, автомобилях и на борту практически любых авианосителей, включая дельтапланы и минисамолеты. Газоанализатор может работать полностью автономно, а вместо выносного пульта может подключаться любое измерительное устройство напряжения постоянного тока от 0 до 5 В. Документирование данных измерений и построение графика в режиме реального времени может осуществляться на обычном персональном компьютере с интерфейсом RS 232C, в том числе переносном. При подключении к системе газоанализатор-компьютер спутниковой навигации возможно картографирование поля загазованности. Побудитель расхода может подключаться через специальную кнопку коммутации напряжения питания на лицевой панели прибор.

Опыт эксплуатации

  • Опыт эксплуатации. С 1998 г. Санкт-Петербургское городское газовое хозяйство «Ленгаз» и с 2004 г. Московское ГУП «Мосгаз» эксплуатируют автолаборатории для поиска утечек природного газа из городских подземных газопроводов на базе «ЛГАУ-02». Опытные образцы прибора эксплуатировались в составе авиалабораторий при проведении атмогеохимической съемки в комплексе газонефтепоисковых работ в Татарстане, Чувашии и на севере Красноярского края и при экологическом обследовании атмосферы городов Тулы и Москвы. Кроме того, приборы использовались в составе автолабораторий при геоэкологическом обследовании территорий распространения техногенных грунтов в ряде районов массовой застройки г. Москвы, а также автономно — при проведении наземной геохимической съемки в Корее. На основе газоанализатора был создан бортовой компьютеризованный комплекс для авиационной углеводородной газовой съемки. В полевом сезоне 2001 г. налет комплекса на борту самолета Ан 2 без единого отказа прибора превысил 600 часов, а общий объем покрытой площади составил около 30 тыс. кв. км.

Перспективы развития комплекса

  • Реализация дополнительных интерфейсов USB;
  • Подключение прибора спутниковой навигации GPS с интерактивной картой местности;
  • Реализация дополнительных возможностей по заказу пользователя.
Публикации

Журнал «Приборы и техника эксперимента», 1999, №5

Лазерный газоанализатор для поиска утечек газа из подземных газопроводов

Журнал «Приборы и системы управления», 1998, №9

Бортовой лазерный абсорбционный газоанализатор углеводородов

Copyright 1998-2005 Инженерный Центр МИФИ

Понравилось? Лайкни нас на Facebook