Mach3 — программа для управления ЧПУ станками. Токарные станки с ЧПУ: устройство, виды и создание своими руками (видео) Чпу установка

– комплекс действий, направленных на приведение в работоспособное состояние станочного оборудования с числовым программным управлением. Наладка станков с системой ЧПУ – завершающий этап настройки прибора. После того, как она будет проведена, аппарат можно будет использовать в автоматическом или полуавтоматическом режиме. К наладочным действиям можно приступать в том случае, если программное обеспечение уже установлено.

Кто осуществляет наладку

Наладка станка с ЧПУ на обработку – сложная задача, выполнением которой занимается квалифицированные сотрудник, имеющий техническую подготовку.

Для успешной настройки станочного оборудования, требуется:

  • знание на профессиональном уровне конструкции инструментального прибора;
  • умение управлять аппаратом в разных режимах;
  • умение использовать технологическую оснастку и другие инструменты фрезерного станка.

В обязанности наладчика входит программирование и запуск управляющих систем, а также проверка электроники и механики настраиваемых аппаратов в процессе эксплуатации. Он должен не только иметь теоретические знания о том, как настроить аппарат, но и обладать практическим опытом.

На должность наладчика обычно принимают людей с высшим образованием в области:

  • машиностроения;
  • программирования;
  • электроники и вычислительной техники.

Наладчикам периодически необходимо проходить повышение квалификации. Это условие требуется в связи с периодическим обновлением станочных токарных приборов, их модернизацией, а также выпуском новых моделей.

Режимы работы ЧПУ

Осуществляя наладку управляющей программы и программного обеспечения, использует режимы, чтобы выполнить корректировку работы станочного прибора. Выделяется несколько режимов, которые используются оператором:

  • ввод информации – внедрение программы управления обработкой, ее анализ, поиск и устранение ошибок;
  • автоматическая работа – процесс фрезерной обработки детали, регулировка действий, сохранение параметров;
  • вмешательство наладчика – коррекция настроек, внесение новой информации без использования автоматического управления фрезерными станками;
  • ручные действия – создание управляющей программы путем осуществления ручной обработки детали и сохранения необходимых параметров;
  • редактирование – устранение ненужных кадров, ухудшающих качество обработки деталей;
  • вывод информации – перенос загруженной программы на съемный носитель или другое устройство через подключение к сети;
  • вычисление – получение нужных параметров на основе использования формул;
  • использование дисплея – вывод обработки детали на экран в момент осуществления данной задачи;
  • диагностика – проверка аппарата, после которой выводится предупреждение о возможных проблемах или сообщение об аварийном состоянии.

Особенность наладки заключается в том, что ее невозможно выполнить профессионально, используя всего один режим. Оператору приходится пользоваться несколькими режимами одновременно или поэтапно, чтобы выполнить осуществить настройку станочного прибора для выполнения необходимой задачи.

Схема наладки

Настройка выполняется пошагово в несколько этапов. Последовательность этапов изменять запрещено, иначе задача будет выполнена неправильно. Выделяется шесть основных этапов наладки:

  • установка оборудования в фиксированное положение;
  • монтаж приспособлений и рабочих механизмов;
  • выполнение размерной настройки;
  • ввод программы управления;
  • обработка пробной заготовки;
  • оценка работы управляющей программы и внесение коррекций.

Следует учитывать, что даже опытный наладчик не может настроить металлорежущие устройства без необходимости внесения изменений. Этот процесс называется подналадка. Он представляет дополнительную регулировку с целью повышения качества обработки. Если станок настраивал профессионал, он обязательно проведет подналадку, и детально рассмотрит ошибки.

Установка инструмента

Первый этап наладки – установка инструментов. Но начинать с установки можно только после очистки комплектующих от пыли, стружки и других загрязнений компоненты оборудования. Для этого рекомендуется использовать:

  • ветошь;
  • кисточки;
  • зубную щетку.

Затем необходимо поместить заглушки в гнезда и отверстия с резьбой, использование которых не планируется. После этого следует убедиться, что винты находятся в исправном состоянии. Затягивая кулачки, нужно заблокировать вращение патрона. Это условие обеспечивается при помощи привода. Ключи, используемые для закрепления оборудования при установке, должны находиться в исправном состоянии.

Привязка инструмента

На втором этапе осуществляется привязка инструмента. Данная задача является одной из самых важных при наладке, которые выполняет оператор. От того, насколько правильно была понята теория, и не было ли допущено ошибок при привязке, зависит бесперебойная работа оборудования.

Привязка осуществляется с определением перемещений осей X и Z, по которым были зафиксированы вылеты. Для измерения используются не только программы, но и штангенциркуль. Рекомендуется использовать модель «колумбус». Также используются специальные датчики, позволяющие максимально точно определить вылеты. Предполагаемые значения вылетов вносятся в таблицу, после чего легче определить предполагаемую траекторию перемещения рабочего инструмента. Если она уже настроена, можно переходить к следующему этапу.

Определение нуля заготовки

Это значение определяется после того, как фрезерные станки будут привязаны. Оно укажет на зону поверхности заготовки, с которой начнется обработка. В большинстве случаев используется торцевая часть детали. Она имеет физическую поверхность, которой может коснуться инструмента. Если он не достает до заготовки, необходимо выбрать другую зону. Станок не переместит фрезу на нужно место автоматически, поэтому сделать это должен оператор.

Важно! Начинать обработку детали с холостым перемещением нельзя.

Для определения этого значения в наладочной системе числового программного управления предусмотрены две функции:

  • первая рассчитана на разовую обработку, и после выключения ЧПУ станка не сохраняет значение нуля;
  • вторая предназначена для серийной обработки, и обеспечивает сохранение данных после выключения аппарата.

Выбор функции осуществляется в зависимости от того, планируется ли производить несколько идентичных деталей.

Ввод и вывод программ управления

Ввод и вывод управляющей программы – одно из самых простых действий при работе со станком с ЧПУ. Для выполнения этой задачи необходимо подключить фрезерный прибор к управляющему устройству. В качестве него может выступать:

  • стационарный компьютер;
  • управляющий терминал;
  • ноутбук.

Если используется компьютер или ноутбук, на него необходимо предварительно установить программу для станков. Указанные действия выполняются нажатием соответствующих клавиш. Они также могут быть подписаны на английском языке. Дополнительно после выбора задачи необходимо нажать клавишу «выполнить». Действия можно выполнять только при выключенном фрезерном станке.

Графический контроль за программой управления

Это действие необходимо в том случае, если ввод управляющей программы осуществлялся ручным способом, или в режиме корректировки вносилось большое количество изменений. Для включения графического контроля также предусмотрена специальная клавиша.

Данная функция позволяет следить за перемещениями фрезера, и фиксировать, по какой настроенной траектории он движется. Но она не берет во внимание коррекцию. Процесс обработки на станках выводится на экран, где за ним может наблюдать оператор. Эта особенность позволяет не только следить за работой фрезерных устройств, работающих с перебоями, но и исправных инструментальных приборов. Она позволяет свести к минимуму вероятность возникновения ошибки.

Важно! Перед запуском функции необходимо внести параметры заготовки, а также выставить значение нуля. Если этого не сделать, станок может выйти из строя, и ему потребуется ремонт.

Наладка в автоматическом режиме

Автоматический режим предполагает автономное движение инструмента, и контроль за ним покадрово. Если фрезерная обработка выполняется непрерывно, перемещать заготовку самостоятельно не нужно, но необходимо наблюдать за звуками. При малейшем изменении стандартного звука, следует нажать кнопку выключения. Для этого рекомендуется при управлении держать руку на клавише выключения. В противном случае будет нанесен вред заготовке, а станок может поломаться.

Программу не обязательно запускать с самого начала. Но она должна начинаться точкой смены инструмента. На большинстве управляющих программ не предусмотрена функция перезапуска. Запуск выполняется на компьютере или контроллере после выбора нужного кадра.

ЧПУ - числовое программное управление, позволяющее станку выполнять обработку изделий в автоматическом режиме, заданном специальной программой, заложенной в цифровом коде. Первые токарные и фрезерные станки с числовым программным управлением появились в нашей стране еще в советскую эпоху. По качеству автоматизации, это были довольно примитивные устройства, чего не скажешь о самой конструкции технических объектов, оснащенных ЧПУ.

С развалом СССР, за время становления рыночной экономики, очень многие разработки отечественных инженеров, были незаслуженно забыты, и в их числе станкостроение с ЧПУ. В 90-х годах прекратилось развитие данной сферы, и, по мнению большинства аналитиков, не восстановлено вплоть, до нынешних времен. Это значит, что отечественное производство не выпускает конкурентоспособных станков с ЧПУ, а приобретение западного оборудования многим предприятиям не по средствам.

Между тем, общеизвестен факт, что развитие числового программного управления напрямую связано с продвижением и процветанием промышленности. Ситуация складывается таким образом, что, наследие советской эпохи износилось и устарело, а представители нового поколения не всем доступны по цене. Установка системы ЧПУ на станок - это одно из направлений модернизации оборудования, предлагаемое в Коломне нашим предприятием, ООО КБ-МПО, основанном на базе Коломенского Завода Тяжёлого Станкостроения (см. " ").

Установка системы ЧПУ на станок предполагает оснащение обычного металлорежущего станка современным числовым программным управлением. Стандартная комплектация данного вида оборудования предусматривает стойку управления и шаговые двигатели с приводами. Стойка управления представляет собой компьютерный блок с программным обеспечением CNC. По желанию клиента, станки могут оснащаться двух- или трехкоординатными системами.

Установка ЧПУ с двухкоординатной системой применяется для станков, рассчитанных на автоматическую обработку деталей вращения. Трехкоординатные системы ЧПУ позволяют получать сложные несимметричные изделия, выполняя, в том числе и фрезеровальные операции, как на цилиндрической, так и на произвольной поверхности.

Токарный станок с ЧПУ представляет собой универсальное электрооборудование, сочетающие возможности обрабатывающего центра и агрегатного модуля. Токарные станки с ЧПУ способны применяться в широкой сфере деятельности, выполнять различные этапы производства заготовок. Ими оснащают конвейеры для серийного производства продукции, специализированные мастерские.

Современная токарная установка с ЧПУ отличается от аналогов без числового программного управления повышенными функциональными возможностями и способностью выполнять настройки практически по всем параметрам. Современное ПО, то есть программное обеспечение, предоставляет возможность использовать современные токарные агрегаты в автономном режиме, сводя к минимуму участие оператора.

С точки зрения конструкции токарные станки с ЧПУ почти не отличаются от обычных моделей. Основная разница заключается в наличии электронного блока управления компонентами оборудования.

Современные модели станков с ЧПУ, за счет отсутствия необходимости ручной настройки и наличия нескольких режущих инструментов, обеспечивают одновременную работу каждого из них. Все резцы в автоматическом режиме выполняют поставленные им через симулятор задачи. В итоге обработка металлоизделий отличается высокой точностью и качеством.

Модели станков с ЧПУ токарного типа позволяют выполнять следующие операции:

  • Изготавливать сложные по конфигурации детали путем точения внутренних и наружных плоскостей;
  • Точить металлозаготовки вдоль изделия;
  • С высокой точностью отрезать части деталей;
  • Растачивать, формировать пазы, выемки, отверстия;
  • Выполнять резьбу различной конфигурации.

Один из основных элементов станка с модулем ЧПУ — это симулятор. Программное обеспечение требует грамотного составления, чтобы симулятор мог адаптироваться под поставленные перед модулем задачи. При этом разработчики стараются сделать симулятор максимально простым, чтобы упростить работу специалистам.

Резцы, обработка, патронно центровой агрегат контролируется специальными датчиками. От датчиков информация про резцы, патронно центровой станок передается в электронный блок управления, повышая тем самым качество и точность обработки.

Элементы конструкции

Подобные инструменты, оснащенные модулем ЧПУ, кажутся сложными. Но на практике их устройство не намного сложнее, чем стандартные комплексы производства без числового программного управления. Все модели патронно центровых, токарно-винторезных и прочих токарных станков российского или зарубежного производства могут дополнительно оснащаться шаговыми электродвигателями, сервоприводами. Они контролируют резцы, другие инструменты, положение каретки за счет работы ЧПУ.

К основным элементам конструкции токарного станка с числовым программным управлением относят:

  • Станину. Она же основа. Это несущее устройство конструкции для установки всех компонентов станка. Также станина берет на себя функции снижения вибраций, которые возникают на этапах производства. Обработка металла требует прикладывать определенные усилия, которые осуществляют резцы, сверлильные инструменты. Потому это провоцирует возникновение колебаний. Вот почему важно выбирать для работы достаточно тяжеловесный станок или прочно его фиксировать на основании, полу, верстаке;
  • Шпиндельную бабку. С их помощью устанавливают токарные патроны. Бабка получает крутящий момент, передаваемый от электродвигателя. Коробка передает позволяет менять режим скорости вращения шпинделя;
  • Суппорта. Задача суппорта — смещать резцы, режущие инструменты относительно обрабатываемой заготовки. Суппорт включает в себя две каретки — нижнюю и верхнюю. На верхней расположен механизм, удерживающий резцы, сверлильные инструменты. Нижняя позволяет перемещать конструкции по направляющим;
  • Систему подачи. Она способствует перемещению суппорта в одной или двух плоскостях.

Многие модели с целью расширения возможностей производства используют револьверные головки. Их особенность в том, что данные держатели позволяют установить разные резцы одновременно. Это позволяет задействовать станок, применяя различные инструменты для обработки изделий.

Особенности эксплуатации

Обработка на токарных станках, имеющих симулятор, модуль ЧПУ, предусматривает обязательное предварительное изучение модели. Устройство, режимы работы, нюансы патронно центрового станка, резцы, приводной инструмент. Все это требует внимания. Первым делом рекомендуется заглянуть в паспорт конкретного приобретенного вами токарного станка с ЧПУ.

Симулятор позволяет детально разобрать резцы, основные инструменты, опробовать, какой может быть обработка, каким образом функционирует приводной инструмент и пр. Без предварительной работы, которую обеспечивает симулятор, результат может несколько разочаровать.

Рассмотрим некоторые основные особенности эксплуатации токарного оборудования, где есть симулятор, модуль ЧПУ, за счет которых инструменты и резцы выполняют свои этапы работы с минимальным участием оператора.

  • Блок ЧПУ позволяет работать станку в двух режимах;
  • Первый режим — автоматический. С ним обработка деталей осуществляется быстрее, но вы не можете контролировать качество выполняемой работы. Автоматический режим используют, когда требуется массовая обработка деталей, создание больших партий заготовок. Сначала программа прогоняется через симулятор, после чего запускается конкретная обработка деталей;
  • Второй режим — полуавтоматический. Полуавтоматика актуальна, когда обработка подразумевает выполнение сложных операций. Особенность полуавтоматического режима в том, что сначала выполняется обработка по одному этапу, после чего станок выключается. Чтобы обработка продолжилась, оператор своими руками активирует соответствующие режимы работы для включения следующего шага. Полуавтоматику применяют, если требуется изготовить штучные заготовки. Многие токарные станки, оснащенные модулем ЧПУ, позволяют использовать автоматический и полуавтоматический режим работы по мере необходимости.

Требования станка с ЧПУ

Токарная установка с числовым программным управлением обладает широким перечнем преимуществ, о чем свидетельствуют отзывы потребителей. Одно из них — это симулятор, который позволяет предварительно проверить, как будет работать станок в том или ином режиме согласно заданным командам через программное обеспечение.

Одновременно с этим есть недостаток — высокая цена. Современный токарный станок с ЧПУ обойдется покупателю минимум в 1 миллион рублей. И чтобы заплаченные деньги себя оправдали, нужно учитывать требования, которые предъявляет станок при эксплуатации.

  1. Поддерживать внутри помещения температуру и влажность на должном уровне.
  2. Проводить периодическую профилактику, проверку элементов токарного оборудования. Особенно это касается электрических компонентов, шпинделей и кареток.
  3. Адаптировать программное обеспечение под конкретный модуль ЧПУ (CNC), установленный на оборудование. Это особенно актуально, когда по мере эксплуатации планируется расширять функциональные возможности токарного устройства.
  4. Соблюдать требования по качеству используемой электросети. Программные элементы станка отличаются чувствительностью к перепадам в электросети, из-за чего не редко могут возникать сбои.
  5. Обустроить место эксплуатации токарного устройства соответствующим образом, предусмотреть ровное размещение, защиту от вибраций, внешних факторов и пр.

Токарные станки, дополненные модулями ЧПУ — это современное металлообрабатывающее оборудование, рассчитанное на повышенную производительность и высокое качество. Это дорогое удовольствие, но полностью себя оправдывающее в процессе эксплуатации.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Санкт-Петербургский институт машиностроения (ЛМЗ-ВТУЗ)

А.М.Александров

НАЛАДКА И ЭКСПЛУАТАЦИЯ СТАНКОВ С ЧПУ

Учебное пособие

Рекомендовано Учебно-методическим объединением по образованию в области автоматизации машиностроения (УМО АМ) в качестве учебного пособия для студентов высших учебных заведений, обучающихся по направлениям: «Конструкторскотехнологическое обеспечение машиностроительных производств», «Автоматизированные технологии и производства» и по специальностям «Технология машиностроения», «Металлорежущие станки и комплексы», «Автоматизация технологических процессов и производств в машиностроении

Санкт-Петербург

УДК 621.9.06 – 52

А.М.Александров Наладка и эксплуатация с ЧПУ: Учебное пособие. – СПб.: Изд-во ПИМаш, 2009. - 124 с.

В учебном пособии рассмотрены вопросы наладки и эксплуатации станков с ЧПУ, включая управление станками в различных режимах, технологическую наладку и размерную настройку, а также автоматизацию контроля процесса обработки.

Пособие предназначено для студентов технологических специальностей, а также для специалистов в области эксплуатации станков с ЧПУ.

Ил.- 69, библ.- 35 назв.

Рецензенты: д.т.н., проф. В.В.Максаров (СЗТУ) к.т.н., доц. Р.Н.Битюков (ПИМаш)

© СанктПетербургский институт машиностроения 2009

ВВЕДЕНИЕ

Наладка станков с ЧПУ является завершающим этапом технологической подготовки автоматизированного производства, который подводит итог всей предыдущей работе по проектированию технологической операции и составлению управляющих программ.

Для успешной наладки и эффективной эксплуатации станка с ЧПУ от наладчика требуется высокая квалификация в различных областях техники. Наладчик должен в совершенстве знать конструкцию своего станка и уметь им управлять во всех режимах. Он должен хорошо ориентироваться в технологической оснастке - приспособлениях, режущих и вспомогательных инструментах. При внедрении новых программ наладчик, зачастую, оказывается в роли технолога-программиста, а в процессе повседневной эксплуатации станка выполняет функции специалиста по электронике и по механике.

Без преувеличения можно сказать, что в современном производстве наладчик станков с ЧПУ является одной из центральных фигур. Это специалист широкого профиля (желательно с высшим образованием), обладающий глубокими знаниями и практическими навыками по технологии машиностроения, программированию, электронике и вычислительной технике. В профессии наладчика не обойтись без таких качеств, как творческая активность и умение самостоятельно работать с технической литературой. Этого требует оригинальный характер решаемых задач, а также постоянное совершенствование станков с ЧПУ и различных вспомогательных устройств.

Особенно важна роль наладчика при эксплуатации ГПС, где кроме наладки самих станков необходимо обеспечить четкое взаимодействие всех производственных модулей, включая транспортно-загрузочные устройства и средства автоматического контроля.

Учебное пособие не претендует на полноту описания всего комплекса задач, связанных с наладкой автоматизированного оборудования. Изложение материала ограничено наладкой станков с ЧПУ, как отдельных технологических модулей. В разделах 1 и 2 рассмотрены вопросы технологической наладки и размерной настройки. В разделе 3 отражены особенности автоматизированного контроля процесса обработки.

1. НАЛАДКА СТАНКОВ С ЧПУ

1.1. Основные этапы наладки

Стандартами ЕСТД (ГОСТ 3.1109-82 и др.) установлено два термина: наладка и подналадка.

Наладка - подготовка технологического оборудования и технологической оснастки к выполнению технологической операции.

Подналадка - дополнительная регулировка технологического оборудования и (или) технологической оснастки при выполнении технологической операции для восстановления достигнутых при наладке значений параметров.

Применительно к станкам с ЧПУ наладка включает в себя подготовку приспособления и инструментов, выход рабочих органов станка в фиксированное положение, установку смещений нуля программы и коррекций на инструмент, пробную обработку первой детали, исправление погрешностей и недочетов в управляющей программе. Подналадка заключается, главным образом, в своевременном внесении коррекций на инструмент (в связи с размерным износом или заменой затупившегося инструмента). При этом подразумевается, что станок с ЧПУ находится в исправном состоянии и не требует "электронной" наладки, которую выполняют представители соответствующих инженерных служб или сервисных организаций.

В технологической наладке станка с ЧПУ можно выделить следующие основные этапы:

- выход в фиксированное положение;

- установка приспособления и инструментов;

- размерная настройка;

- ввод управляющей программы;

- пробная обработка;

- оценка программы и ее корректировка (для новой УП).

Наиболее ответственным этапом является размерная настройка, которая заключается в согласовании систем координат станка, программы и инструмента. Методика размерной настройки требует более детального изучения и подробно рассмотрена в разделе 2.

Для приближенной оценки затрат времени на наладку станков с ЧПУ можно использовать упрощенные формулы (табл. 1.1), которые устанавливают связь подготовительно-заключительного времени ТПЗ (мин) с числом инструментов в наладке К (шт) и длительностью автоматического цикла работы tЦ (мин). При наладке робото-технологических комплексов (РТК) или гибких производственных модулей (ГПМ) рекомендуется увеличивать нормативные значения ТПЗ на 5% .

Таблица 1.1 Формулы для расчета подготовительно-заключительного времени

на наладку станков с ЧПУ

Тип станка

Формула для расчета

Токарные станки:

черновая обработка

ТПЗ = 24

ЗК +1,5+ tЦ

чистовая обработка

ТПЗ = 36

ЗК + 1,5+ tЦ

Сверлильные станки

ТПЗ = 28

0,25 К + tЦ

Расточные станки

Т ПЗ

47+ К + tЦ

Фрезерные станки

Т ПЗ

36+ К + tЦ

1.2. Выход в фиксированное положение

Среди базовых (характерных) точек станка с ЧПУ следует выделить фиксированное положение (ФП) и нуль станка* .

Фиксированное положение является реперной точкой измерительной системы и определяется специальными устройствами (путевые упоры, конечные выключатели, датчики положения и др.), которые жестко закреплены на направляющих станка. Как правило, датчики ФП устанавливают на пределе хода по каждой координате.

Нуль станка соответствует началу координатной системы станка. В конечном итоге все запрограммированные перемещения преобразуются к станочной системе и отрабатываются следящими приводами именно от нуля станка.

Для некоторых станков ФП и нуль станка совпадают, что является причиной смешивания этих понятий во многих руководствах. Однако, в общем случае ФП и нуль станка отличаются друг от друга и должны рассматриваться отдельно (рис. 1.1).

Рис.1.1. Примеры взаимного расположения нуля станка и ФП:

а - для токарного станка; б - для фрезерного станка

* В зависимости от конструкции станка к базовым точкам от-

носят также позицию смены инструмента, позицию смены столов-

спутников, контрольную позицию и др.

Например, для токарных станков (рис.1.1, а) нуль станка М совмещают с осью вращения шпинделя (ось Z), а ФП располагают на пределе хода по координате X. Для фрезерных станков (рис.1.1, б) может оказаться удобным принять нуль станка М в центральном положении стола, которое не совпадает с ФП по двум координатам X и Y. Связь между нулем станка

и ФП устанавливают в виде станочных параметров Х ФП , YФП , ZФП, значения которых записывают в энергозащищенную память станка. Регулировку

и закрепление датчиков ФП выполняют на заводе изготовителе. Дополнительная регулировка датчиков в процессе повседневной эксплуатации допускается лишь в случае крайней необходимости. Обычно ограничиваются изменением значений параметров Х ФП , YФП , ZФП , c помощью которых можно расположить нуль станка в любой точке рабочего пространства.

После включения станка и УЧПУ наладчик должен вывести рабочие органы в ФП по каждой координате. Это необходимо для привязки станочной системы координат к измерительной системе станка. Команду выхода в ФП задают в ручном режиме путем нажатия специальных кнопок на пульте управления. Обычно для каждой координаты предусмотрена своя кнопка выхода в ФП. В некоторых моделях УЧПУ для выхода в ФП нужно задать не только координату, но и направление движения ("+" или "-"). Применяется также и автоматический выбор последовательности и направления выхода в ФП. В этом случае на пульте предусмотрена только одна кнопка независимо от числа координат. Выход рабочих органов в ФП по каждой координате подтверждается световой индикацией или специальным сообщением на экране дисплея. В большинстве современных УЧПУ существует возможность выхода в ФП не только в ручном, но и в автоматическом режиме с помощью специальной G-команды.

Движение рабочих органов в ФП осуществляется, как правило, на быстром ходу с торможением при подходе к датчику точного останова. Кроме того, станок оснащают датчиками предупредительного и аварийного

останова. Один из вариантов конструктивной реализации этих остановов показан на рис. 1.2. На направляющих станка закреплена линейка 5 с пазами, а на подвижном органе - блок конечных выключателей 4. В пазах линейки установлены аварийные кулачки I и 7, предупредительные кулачки 2 и 6, а также кулачок точного останова 3.

Рис.1.2. Линейка с путевыми кулачками и блок конечных выключателей

Воздействие кулачка 3 на соответствующий конечный выключатель дает команду замедления скорости перемещения (подготовки к точному останову). Сам останов происходит от сигнала нулевой метки датчика обратной связи. Между двумя соседними сигналами нулевой метки имеется промежуток от 2 до 10 мм хода в зависимости от типа датчика. В связи с этим небезразлично, в какой момент по отношению к сигналу точного останова произойдет срабатывание конечного выключателя от кулачка 3 для замедления скорости движения.

На рис. 1.3. изображен график скорости движения V рабочего органа от его пути S, поясняющий различные условия останова в зависимости от интервала между командой на торможение и сигналом точного останова.

Рис.1.3. График изменения скорости движения рабочего органа при выходе в фиксированное положение

В начале движения на участке ОА происходит увеличение скорости до заданного значения V. Точный останов по сигналу датчика обратной связи должен быть осуществлен в точке В. Нормативные условия торможения и точного останова будут выполнены, если команда на замедление скорости произойдет в точке Б.

При преждевременной выдаче команды на торможение в точке Б1 рабочий орган будет долго двигаться на малой скорости и может остановиться в точке В1 вместо точки В (из-за неустойчивого и скачкообразного характера движения на малых скоростях).

При опоздании команды на замедление (в точке Б2 ), несмотря на резкое торможение, рабочий орган перебежит точку В и только после реверса движения в точке В2 достигнет заданной точки В. При этом из-за нечеткости срабатывания конечного выключателя реверс может и не произойти. Рабочий орган пойдет на медленной скорости дальше до следующего по счету сигнала нулевой метки.

Такая ситуация недопустима, поскольку расположение ФП (а значит и нуля) станка становится неопределенным. Рабочий орган останавливается то в одном, то в другом ФП, расстояние между которыми равно шагу между сигналами нулевой метки. Выйти из этой неопределенности следует за счет небольшого смещения кулачка точного останова вдоль паза линейки.

На границах рабочего хода рабочего органа предусмотрены аварийные остановы, предохраняющие гайки ходовых винтов от наезда на опоры, винтовые пары качения от рассыпания шариков, столы и суппорты от съезда с направляющих и др. Но срабатывание конечного выключателя от кулачков I или 7 (см. рис. 1.2) само по себе уже является аварийной ситуацией, поскольку на станке предусмотрено два вида предупредительных остановов: от кулачков 2 и 6 или путем ограничения рабочей зоны с помощью параметров настройки. В некоторых случаях приходится изменять положение предупредительных остановов, например, при замене патрона иди перемещении задней бабки для токарных станков. В то же время не следует изменять положение кулачка точного останова, особенно, если в станке проведена компенсация погрешности ходовых винтов.

1.3. Установка приспособления и инструментов

При установке приспособления и инструментов наладчик руководствуется следующим перечнем технологических документов:

- карта наладки (КН/П);

- операционная карта (ОК);

- карта эскизов (КЗ);

- карта кодирования информации (ККИ).

Основными документами здесь являются карта наладки и карты эскизов, которые иллюстрируют процесс наладки. Следует отметить, что стандартная форма КН/П (ГОСТ 3.1404-86) не вполне пригодна для современных станков с ЧПУ, наладка которых отличается повышенным уровнем

ПРОВЕРЕНО НА ПРАКТИКЕ.

КАК НАСТРОИТЬ МАСШТАБ НА СТАНКЕ

Как добиться того чтобы рисунок на мониторе и его размеры соответствовали размерам которые сделает станок ЧПУ? Почему рисунок "вылазит" за край стола или получается слишком мелким?

Довольно часто приходиться видеть как начинающие и не очень ЧПУшники пытаются высчитать масштабы изделия на стадии разработки станка. Пересчитывают градусы поворота мотора, шаг ШВП, длину пробега и еще массу параметров. Между тем существует простой метод добиться истинного масштаба на станке без таких трудоемких процедур. Этой статьей попытаюсь помочь всем энтузиастам ЧПУ станков.

Исходим из того,что Вы уже определились какая мощность моторов устраивает Вас.

Итак устанавливаете имеющиеся моторы на ось станка

Устанавливаете любое ШВП которое Вы смогли купить или достать.

Если нет ШВП то устанавливаете любой винте "трапеция"

Шаг резьбы винта и угол поворота мотора не имеют значения!

Итак Ваш станок готов, подключен к компьютеру, программа ЧПУ запущена (в нашем случае это МАСН-3)

Рис1 окно настройки двигателей оси

Откройте программу "Блокнот" путь-(Пуск-все программы-стандартные-блокнот)

Наберите в нем программу

G0 X50

G0 Z5

Сохраните программу под любым именем с расширением " txt"

Сохраняйте на "Рабочий стол" для быстрого поиска

Загрузите программу в МАСН-3 (Файл-Открыть Gкоды ).

Поставьте фрезу

Коснитесь ей заготовки с небольшим заглублением

Обнулите все координаты

Запустите написанную вами программу.

Станок начертит отрезок длинной 50мм

Замерьте полученный размер отрезка и поделите полученное число на число в окне программы МАСН-3 по пути -> «Шаг\единицы» в окне по адресу «Конфигурации» далее «Настройка двигателей»

(Первое слева снизу окно подписано " Steps per ")

В окошке уже стоит некое число, например 2000 - это число шагов на 1мм перемещения станка

Разделите это число на 50 (длинна вашего отрезка) и полученное число внесите в это же окно

Отфрезеруйте отрезок еще раз отрезок и проверьте результат, при необходимости повторить настройки.

Пример

Выполнили файл «отрезок» длинна которого задана 50 мм.

Загрузили в МАСН-3

Запустили станок.

Получили на станке размер отрезка равным 55 мм.

Нужно привести его к 50 см (так как мы его задали изначально)

2000\55=36,36

36,36х50=1818

Где 2000-имеющееся число в графе «Шаг\единицы» .

55 - полученный результат на станке (в мм).

36,36 = 1 шагу станка (1мм)

1818 = 50 шагам станка (50мм)

1818 - Это число вписываем в место 2000 в таблицу

Точная подгонка

Начертили на станке файл «отрезок» после корректировок проведенных выше.

Получили:

55,5мм

Делаем

1818 \ 50,5 = 39,60

39,60 х 50 = 1980-Вписываем это число в таблицу

Вот и все Успехов!

Понравилось? Лайкни нас на Facebook