Резонанс в электрических цепях наступает при. Резонанс напряжений. Что такое резонанс в электрической цепи. Применение токового резонанса

Явление резонанса. Электрическая цепь, содержащая индуктивность и емкость, может служить колебательным контуром, где возникает процесс колебаний электрической энергии, переходящей из индуктивности в емкость и обратно. В идеальном колебательном контуре эти колебания будут незатухающими. При подсоединении колебательного контура к источнику переменного тока угловая частота источника? может оказаться равной угловой частоте? 0 , с которой происходят колебания электрической энергии в контуре. В этом случае имеет место явление резонанса, т. е. совпадения частоты свободных колебаний? 0 , возникающих в какой-либо физической системе, с частотой вынужденных колебаний?, сообщаемых этой системе внешними силами.

Резонанс в электрической цепи можно получить тремя способами: изменяя угловую частоту? источника переменного тока, индуктивность L или емкость С. Различают резонанс при последовательном соединении L и С - резонанс напряжений и при параллельном их соединении - резонанс токов. Угловая частота? 0 , при которой наступает резонанс, называется резонансной, или собственной частотой колебаний резонансного контура.

Резонанс напряжений. При резонансе напряжений (рис. 196, а) индуктивное сопротивление X L равно емкостному Х с и полное сопротивление Z становится равным активному сопротивлению R:

Z = ?(R 2 + [? 0 L — 1/(? 0 C)] 2) = R

В этом случае напряжения на индуктивности U L и емкости U c равны и находятся в противофазе (рис. 196,б), поэтому при сложении они компенсируют друг друга. Если активное сопротивление цепи R невелико, ток в цепи резко возрастает, так как реактивное сопротивление цепи X = X L -X с становится равным нулю. При этом ток I совпадает по фазе с напряжением U и I=U/R. Резкое возрастание тока в цепи при резонансе напряжений вызывает такое же возрастание напряжений U L и U c , причем их значения могут во много раз превышать напряжение U источника, питающего цепь.

Угловая частота?0, при которой имеют место условия резонанса, определяется из равенства ? o L = 1/(? 0 С).

Отсюда имеем

? o = 1/?(LC) (74)

Если плавно изменять угловую частоту? источника, то полное сопротивление Z сначала начинает уменьшаться, достигает наименьшего значения при резонансе напряжений (при? o), а затем увеличивается (рис. 197, а). В соответствии с этим ток I в цепи сначала возрастает, достигает наибольшего значения при резонансе, а затем уменьшается.

Резонанс токов. Резонанс токов может возникнуть при параллельном соединении индуктивности и емкости (рис. 198, а). В идеальном случае, когда в параллельных ветвях отсутствует активное сопротивление (R 1 =R 2 = 0), условием резонанса токов является равенство реактивных сопротивлений ветвей, содержащих индуктивность и емкость, т. е. ? o L = 1/(? o C) . Так как в рассматриваемом случае активная проводимость G = 0, ток в неразветвленной части
цепи при резонансе I=U?(G 2 +(B L -B C) 2)= 0 . Значения токов в ветвях I 1 и I 2 будут равны (рис. 198,б), но токи будут сдвинуты по фазе на 180° (ток IL в индуктивности отстает по фазе от напряжения U на 90°, а ток в емкости I с опережает напряжение U на 90°). Следовательно, такой резонансный контур представляет собой для тока I бесконечно большое сопротивление и электрическая энергия в контур от источника не поступает. В то же время внутри контура протекают токи I L и I с, т. е. имеет место процесс непрерывного обмена энергией внутри контура. Эта энергия переходит из индуктивности в емкость и обратно.

Как следует из формулы (74), изменяя значения емкости С или индуктивности L, можно изменять частоту колебаний? 0 электрической энергии и тока в контуре, т. е. осуществлять настройку контура на требуемую частоту. Если бы в ветвях, в которых включены индуктивность и емкость, не было активного сопротивления, этот процесс колебания энергии продолжался бы бесконечно долго, т. е. в контуре возникли бы незатухающие колебания энергии и токов I L и I с. Однако реальные катушки индуктивности и конденсаторы всегда поглощают электрическую энергию (из-за наличия в катушках активного сопротивления проводов и возникновения

в конденсаторах токов смещения, нагревающих диэлектрик), поэтому в реальный контур при резонансе токов поступает от источника некоторая электрическая энергия и по неразветвленной части цепи протекает некоторый ток I.

Условием резонанса в реальном резонансном контуре, содержащем активные сопротивления R 1 и R 2 , будет равенство реактивных проводимостей B L = B C ветвей, в которые включены индуктивность и емкость.

Из рис. 198, в следует, что ток I в неразветвленной части цепи совпадает по фазе с напряжением U, так как реактивные токи 1 L и I с равны, но противоположны по фазе, вследствие чего их векторная сумма равна нулю.

Если в рассматриваемой параллельной цепи изменять частоту? о источника переменного тока, то полное сопротивление цепи начинает увеличиваться, достигает наибольшего значения при резонансе, а затем уменьшается (см. рис. 197,б). В соответствии с этим ток I начинает уменьшаться, достигает наименьшего значения I min = I a при резонансе, а затем увеличивается.

В реальных колебательных контурах, содержащих активное сопротивление, каждое колебание тока сопровождается потерями энергии. В результате сообщенная контуру энергия довольно быстро расходуется и колебания тока постепенно затухают. Для получения незатухающих колебаний необходимо все время пополнять потери энергии в активном сопротивлении, т. е. такой контур должен быть подключен к источнику переменного тока соответствующей частоты? 0 .

Явления резонанса напряжения и тока и колебательный контур получили весьма широкое применение в радиотехнике и высокочастотных установках. При помощи колебательных контуров мы получаем токи высокой частоты в различных радиоустройствах и высокочастотных генераторах. Колебательный контур - важнейший элемент любого радиоприемника. Он обеспечивает его избирательность, т. е. способность выделять из радиосигналов с различной длиной волны (т. е. с различной частотой), посланных различными радиостанциями, сигналы определенной радиостанции.

Резонанс в электрической цепи возникает при резком увеличении амплитуды стационарных колебаний при совпадении частоты внешнего воздействия с определенной резонансной частотой системы. Это происходит тогда, когда два элемента противоположного характера компенсируют эффект друг друга в цепи.

RLC-цепь

Схема RLC – это электрическая цепь с последовательно или параллельно соединенными элементами:

  • резистора,
  • индуктора,
  • конденсатора.

Название RLC связано с тем, что эти буквы являются обычными символами электрических элементов: сопротивления, индуктивности и емкости.

Векторная диаграмма последовательной RLC-цепи представлена в одном из трех вариантов:

  • индуктивном,
  • емкостном,
  • активном.

В последнем варианте при нулевом сдвиге фаз, равенстве индуктивного и емкостного сопротивлений возникает резонанс напряжений.

Электрический резонанс

В природе бывают резонанс токов и резонанс напряжений. Наблюдаются они в цепи с параллельным и последовательным соединением элементов R, L и С. Резонансная частота одинакова для обеих цепей, она находится из условия противоположности сопротивлений реактивных элементов и вычисляется по нижеследующей формуле.

Векторные диаграммы практически идентичны, только сигналы отличаются. В последовательном контуре резонируют напряжения, в параллельном – ток. Но если отступиться от резонансной частоты такая симметрия естественно нарушится. В первом случае сопротивление возрастет, во втором – уменьшится.

Резонанс напряжений, достигающих максимальной амплитуды

На картинке ниже представлена векторная диаграмма цепи последовательного контура, где:

  • I – вектор общего тока;
  • Ul – опережает I на 900;
  • UС – отстает от I на 900;
  • UR – синфазно I.

Из трех векторов напряжения (Ul, UС, UR) два первых взаимно компенсируют друг друга. Они между собой:

  • противоположны по направлению,
  • равны по амплитуде,
  • отличаются по фазе на пи.

Получается, что напряжение по второму закону Кирхгофа приложено только к резистору. В этот момент:

  • импеданс последовательного контура на резонансной частоте минимален и равен просто R;
  • так как сопротивление цепи минимальное, то соответственно ток по амплитуде максимальный;
  • также приблизительно максимальны напряжения на индуктивности и на емкости.

Если рассматривать отдельно последовательный контур LC, то он даёт нулевое сопротивление на резонансной частоте:

Важно! Когда установился гармонический режим c резонансной частотой, в контуре происходит следующее: источник обеспечивает установившуюся амплитуду колебаний; мощность источника расходуется лишь на нагрев резистора.

Резонанс токов через реактивные элементы

Диаграмма параллельного контура на той же частоте. Поскольку все элементы соединены параллельно, то диаграмму лучше начать строить с общего напряжения.

  • U – вектор общего тока;
  • Ic – опережает U на 900;
  • IU – отстает от U на 900;
  • Ток в резисторе (IR) синфазен общему напряжению.

Поскольку сопротивления реактивности по модулю равны, то и амплитуды токов Ic и Iu :

  • одинаковы;
  • достигают максимальной амплитуды.

Получается, что по первому закону Кирхгофа IR равен току источника. Другими словами, ток источника течет только через резистор.

Если рассматривать отдельно параллельный контур LC, то на резонансной частоте его сопротивление бесконечно большое:

Когда установится гармонический режим c резонансной частотой, в контуре происходит следующее:

  • источник обеспечивает установившуюся амплитуду колебаний;
  • мощность источника тока расходуется лишь на пополнение потерь в активном сопротивлении.

Двойственность RLC-контуров

Таким образом, можно сделать сравнительный вывод:

  1. У последовательной RLC цепи импеданс минимален на резонансной частоте и равен активному сопротивлению контура;
  2. У параллельной RLC цепи импеданс максимален на резонансной частоте и равен так называемому сопротивлению утечки, фактически тоже активному сопротивлению контура.

Для того чтобы предуготовить условия для резонанса тока или напряжения, требуется проверить электрическую цепь с целью предопределения ее комплексного сопротивления или проводимости. Помимо этого, её мнимую часть необходимо приравнять к нулю.

Для информации. Напряжения в последовательной цепи ведут себя очень похоже токам параллельной цепи на резонансной частоте, в этом проявляется двойственность RLC-контуров.

Применение резонансного явления

Хорошим примером применения резонансного явления может служить электрический резонансный трансформатор, разработанный изобретателем Николой Тесла ещё в 1891 году. Тесла проводил эксперименты с различными конфигурациями, состоящими в сочетании из двух, а иногда трех резонансных электрических цепей.

Для информации. Термин «катушки Теслы» применяются к ряду высоковольтных резонансных трансформаторов. Устройства используются для получения высокого напряжения, низкого тока, высокой частоты переменного тока.

В то время как обычный трансформатор предназначен для эффективной передачи энергии с первичной на вторичную обмотку, резонансный трансформатор предназначен для временного хранения электрической энергии. Устройство управляет воздушным сердечником резонансно настроенного трансформатора для получения высоких напряжений при малых токах. Каждая обмотка имеет емкость и функционирует как резонансный контур.

Чтобы произвести наибольшее выходное напряжение, первичный и вторичный контуры настроены в резонанс друг с другом. Оригинальные схемы изобретателя применяются как простые разрядники для возбуждения колебаний с помощью настроенных трансформаторов. В более сложных конструкциях используют транзисторные или тиристорные выключатели.

Для информации. Трансформатор Теслы основан на использовании резонансных стоячих электромагнитных волн в катушках. Своеобразный дизайн катушки продиктован необходимостью достигнуть низкого уровня резистивных потерь энергии (высокая добротность) на высоких частотах, что приводит к увеличению вторичных напряжений.

Электрический резонанс – одно из самых распространенных в мире физических явлений, без которого не было бы TV, диагностических мед. аппаратов. Одни из самых полезных видов резонанса в электрической цепи – это резонанс токов и резонанс напряжений.

Видео

Резонансом называют режим, когда в цепи, содержащей индуктивности и емкости, ток совпадает по фазе с напряжением . Входные реактивные сопротивление и проводимость равны нулю:
x = ImZ = 0 и B = ImY = 0. Цепь носит чисто активный характер:
Z = R ; сдвиг фаз отсутствует (j = 0).

Напряжения на индуктивности и емкости в этом режиме равны по величине и, находясь в противофазе, компенсируют друг друга. Все приложенное к цепи напряжение приходится на ее активное сопротивление (рис. 2.42, а ).

Рис. 2.42. Векторные диаграммы при резонансе напряжений (а) и токов (б)

Напряжения на индуктивности и емкости могут значительно превышать напряжения на входе цепи. Их отношение, называемое добротностью контура Q , определяется величинами индуктивного (или емкостного) и активного сопротивлений

Добротность показывает, во сколько раз напряжения на индуктивности и емкости при резонансе превышают напряжение, приложенное к цепи. В радиотехнических цепях она может достигать нескольких сотен единиц.

Из условия (2.33) следует, что резонанса можно достичь, изменяя любой из параметров – частоту, индуктивность, емкость. При этом меняются реактивное и полное сопротивления цепи, а вследствие этого – ток, напряжение на элементах и сдвиг фаз. Не приводя анализа формул, показываем графические зависимости некоторых из этих величин от емкости (рис. 2.43). Емкость , при которой наступает резонанс, можно определить из формулы (2.33):

Если, например, индуктивность контура L = 0,2 Гн, то при частоте 50 Гц, резонанс наступит при емкости

Рис. 2.43. Зависимости параметров режима от емкости

Аналогичные рассуждения можно провести и для цепи, состоящей из параллельно соединенных R , L и C (рис. 2.31, а ). Векторная диаграмма ее резонансного режима приведена на рис. 2.42, б .

Рассмотрим теперь более сложную цепь с двумя параллельными ветвями, содержащими активные и реактивные сопротивления
(рис. 2.44, а ).

Рис. 2.44. Разветвленная цепь (а ) и ее эквивалентная схема (б )

Для нее условием резонанса является равенство нулю ее реактивной проводимости: ImY = 0 . Это равенство означает, что мы должны мнимую часть комплексного выражения Y приравнять к нулю.

Определяем комплексную проводимость цепи. Она равна сумме комплексных проводимостей ветвей:


Приравнивая к нулю выражение, стоящее в круглых скобках, получаем:

Или . (2.34)

Левая и правая части последнего выражения представляют собой не что иное, как реактивные проводимости первой и второй ветвей B 1 и B 2 . Заменяя схему на рис. 2.44, а эквивалентной (рис. 2.44, б ), параметры которой вычисляем по формуле (2.31), и используя условие резонанса(B = B 1 – B 2 = 0), снова приходим к выражению (2.34).

Схеме на рис. 2.44, б соответствует векторная диаграмма, приведенная на рис. 2.45.

Резонанс в разветвленной цепи называется резонансом токов . Реактивные составляющие токов параллельных ветвей противоположны по фазе, равны по величине и компенсируют друг друга, а сумма активных составляющих токов ветвей дает общий ток.

Рис. 2.45. Векторная диаграмма резонансного режима разветвленной цепи

Пример 2.23. Считая R 2 и x 3 известными, определить величину x 1 , при которой в цепи наступит резонанс напряжений (рис. 2.46, а ). Для резонансного режима построить векторную диаграмму.

Резонанс токов, хорошо известный как естественный токовый «параллельный резонанс» - процесс или явление, которое протекает в условиях параллельного типа колебательного контура и наличия напряжения.

В данном случае частота источника напряжения должна иметь совпадение с аналогичными резонансными показателями контура.

Токовым резонансом называется особый вид состояния цепи, когда общие токовые показатели совпадают по фазным параметрам с уровнем напряжения, а реактивная равняется нулю и цепью потребляется исключительно активная мощность.

Данный вариант является характерным преимущественно для схем с переменными показателями токовых величин и обладает не только положительными свойствами, но и некоторыми совершенно нежелательными качествами, которые в обязательном порядке учитываются еще в процессе проектирования.

Положительное резонансное действие - явление из области радиотехники, автоматики и проволочной телефонии. Резонанс напряжений относится к категории нежелательных явлений, обусловленных перенапряжениями. При этом добротным электрическим контуром принято считать величину:

Достижение токового резонанса осуществляется подбором необходимого индуктивного или емкостного значения, а также показателей частотности питающих сетей.

Токовый резонанс получается подбором параметров электроцепи в условиях заданной частоты источника питания, а также посредством выбора обратных показателей.

Применение токового резонанса

Основная область активного применения широко востребованных резонансных токов сегодня представлена:

  • некоторыми видами фильтрующих систем, в которых току с определенными частотными параметрами оказываются значительные показатели сопротивления;
  • радиотехникой в виде приемников, выделяющих сигналы, предназначенные для конкретных точек радиостанций. Оказание значительного сопротивления току сопровождается снижением показателей контурного напряжения при максимальной частоте;
  • асинхронного типа двигателями, в особенности функционирующими в условиях неполной нагрузки;
  • установками высокоточной электрической сварки;
  • колебательными контурами внутри узлов генераторов электронного типа;
  • приборами, отличающимися высокочастотной закалкой;
  • снижением показателей генераторной нагрузки. При таких условиях в приемном трансформаторе с первичной обмоткой делается колебательный контур.

Схема цепи

Особенно часто колебательные контуры или токовые резонансы применяются в производстве современного промышленного индукционного котлового оборудования, что позволяет в значительной степени улучшить стартовые показатели коэффициента полезного действия.

Стандартные колебательные контуры, функционирующие в условиях режима токового резонанса, массово применяются в качестве одного из наиболее важных узлов в современных электронных генераторах.

Принцип резонанса токов

Токовый резонанс наблюдается внутри электроцепи, обладающей параллельным катушечным, резисторным и конденсаторным подсоединением. Основной принцип работы стандартного резонанса токов не слишком сложен для понимания простого обывателя:

  • включение электропитания сопровождается накоплением заряда внутри конденсатора до номинальных показателей напряжения источника;
  • отключение питающего источника с последующим замыканием цепи в контур сопровождается процессом переноса разряда на катушечную часть прибора;
  • токовые показатели, проходящие по катушке, вызывают генерирование магнитного поля и создание электродвижущей силы самоиндукции, в направлении, встречном току;
  • максимальное значение токовых показателей достигается на стадии полного конденсаторного разряда;
  • весь объем накопленной энергетической емкости легко преобразуется в магнитное индукционное поле;
  • катушечная самоиндукция не провоцирует остановку заряженных частиц, а повторный этап зарядки с другим типом полярности обусловлен отсутствием конденсаторного противотока.

Резонанс в параллельной цепи (резонанс токов)

Итогом данного цикла является повторяющееся преобразование всего катушечного поля в конденсаторный заряд. Определение стандартной резонансной частоты осуществляется аналогично расчетам резонанса напряжения.

Присутствующая внутренняя активная составляющая R вызывает постепенное угасание колебательного процесса, чем и обуславливается токовый резонанс.

Резонанс токов в цепи с переменным током

Протекание тока внутри электрической цепи с последовательным, параллельным или смешанным типом соединения элементов, вызывает получение различных режимов функционирования.

Таким образом, резонанс электрической цепи является режимом участка, который содержит элементы индуктивного и емкостного типа, а угол фазового сдвига между токовыми величинами и показателями напряжения нулевые.

В соединяемых параллельным способом конденсаторе и катушечной части наблюдается равное реактивное сопротивление, чем обусловлен резонанс.

Также должен учитываться тот факт, что для катушечной части и конденсатора характерно полное отсутствие активного сопротивления, а равенство реактивного сопротивления делает нулевыми общие токовые показатели внутри неразветвленной части электрической цепи и большие величины тока в ветвях.

В условиях параллельного соединения индуктивной катушки и конденсатора получается колебательный контур, который отличается наличием создающего колебания генератора, не подключенного в контур, что делает систему замкнутой.

Явление, сопровождающееся резким уменьшением амплитуды силы токовых величин внешней цепи, которая используется для питания параллельно включенного конденсатора и обычной индуктивной катушки в условиях приближения частоты приложенного напряжения к частоте резонанса, носит название токового или параллельного резонанса.

Расчет резонансного контура

Необходимо помнить, что явление, представленное токовым резонансом, нуждается в очень грамотном и тщательном расчете резонансного контура. Особенно важно выполнить правильный и точный расчет при наличии параллельного соединения, что позволит предотвратить развитие помех внутри системы. Чтобы расчет был правильным, требуется определиться с показателями мощности электрической сети. Среднюю стандартную мощность, которая рассеивается в условиях резонансного контура, можно выразить среднеквадратичными показателями тока и напряжения.

В условиях резонанса стандартный коэффициент мощности составляет единицу, а формула расчета имеет вид:

Формула расчета

С целью правильного определения нулевого импеданса в условиях резонанса потребуется использовать стандартную формулу:

Резонансные кривые

Резонанс колебательной частоты аппроксимируется по следующей формуле:

Резонанс колебательного контура

Чтобы получить максимально точные данныепо формулам, все получаемые в процессе расчетов значения рекомендуется не подвергать округлению. Некоторыми физиками расчеты значений резонансного контура осуществляются в соответствии с методом векторной диаграммы активных токовых величин. В таком случае грамотный расчет и правильная настройка приборов гарантирует достойную экономию при условии переменного тока.

Резонансные цепи применяются преимущественно для выделения сигнала на нужных частотах в результате фильтрования других сигналов, поэтому самостоятельные расчеты контура должны быть предельно точными.

Заключение

Резонанс токовых величин в физике - это естественное явление, сопровождающееся резким возрастанием амплитуды колебания внутри системы, что обусловлено совпадением показателей собственных и внешних возмущающих частот.

Подобный вариант явлений характеризует электрические схемы с наличием элементов, представленных нагрузками активного, индуктивного и емкостного типа. Таким образом, токовый резонанс - один из наиважнейших параметров, широко используемых в настоящее время в целом ряде современных отраслей, включая промышленное электрическое снабжение и радиосвязь.

Резонанс напряжений (или последовательный резонанс) может наблюдаться в электрической цепи, содержащей последовательно соединённые участки с разным характером реактивности. Название объясняется тем, что при резонансе оказываются равными друг другу по величине реактивные составляющие напряжений на указанных выше участках с разным характером реактивностей.

Резонанс напряжений может наблюдаться, к примеру, в цепи рис. 1.Найдём условие резонанса в этой цепи. Для этого участки R1 L и R2 C заменим эквивалентными (рис. 2).

Как известно:

Если X’L окажется больше X’C, то цепь рис. 2 (а вместе с тем и цепь рис. 1) будет иметь активно-индуктивный характер и резонанс невозможен. Если X’L < X’C, то цепи рис. 1 и рис. 2 имеют активно-емкостной характер и резонанс также невозможен. При X’L = X’C цепи имеют чисто активный характер, следствием чего оказывается совпадение по фазе напряжения U и тока I , т.е. резонанс в цепи рис. 1.

С учётом (1) и (2) условие резонанса принимает вид:

Соотношение (3) приводит к уравнению третьей степени относительно частоты ω. Единственный положительный корень этого уравнения определяет так называемую резонансную частоту:

где – характеристическое сопротивление цепи.

Векторная диаграмма для цепи рис. 1 на резонансной частоте показана на рис. 3. Из диаграммы видно, что при резонансе, действительно, равны реактивные составляющие напряжений U1 и U2 .

U 1 p = U 2 p

Рис. 3

Рассмотрим интересный частный случай цепи рис. 1 при условии . Комплексное сопротивление такой цепи равно:

Таким образом, выяснилось, что комплексное сопротивление указанной цепи на всех частотах чисто активно. Это означает, что резонанс в данной цепи наблюдается на любой частоте.

Резонанс токов

Резонанс токов (или параллельный резонанс) может наблюдаться в электрической цепи, содержащей параллельно соединённые участки с разным характером реактивностей.

Название в этом случае объясняется тем, что при резонансе оказываются равными друг другу по величине реактивные составляющие токов указанных выше участков с разным характером реактивностей.

Резонанс токов может, к примеру, наблюдаться в цепи рис. 4

Условие резонанса для данной цепи можно найти аналогично тому, как это делалось для цепи рис. 1.

Рис. 4

Это условие имеет вид:

Решая это уравнение (5) относительноω, найдём резонансную частоту:

Векторная диаграмма для цепи рис. 4 на резонансной частоте показана на рис. 5. Из неё видно, что при резонансе токов, действительно, равны по величине реактивные составляющие токов I 1 и I 2 .

I 1p = I 2p

Точно так же, как и в предыдущем случае, можно доказать, что комплексное сопротивление цепи рис. 4 при условии

на любой частоте и равно: Z = R .

Это и означает, что и в этой цепи резонанс имеет место на всех частотах.

Понравилось? Лайкни нас на Facebook