Многопоточные приложения. Пример простого многопоточного приложения Для каких целей используются многопоточные системы

Многопоточное программирование ничем принципиально не отличается от написания событийно-ориентированных графических пользовательских интерфейсов и даже от создания простых последовательных приложений. Здесь действуют все важные правила, касающиеся инкапсуляции, разделения ответственности, слабого связывания и т.д. Но многие разработчики с трудом пишут многопоточные программы именно потому, что пренебрегают этими правилами. Вместо этого они пытаются применять на практике гораздо менее важные знания о потоках и синхронизационных примитивах, почерпнутые в текстах о многопоточном программировании для начинающих.

Итак, что же это за правила

Иной программист, столкнувшись с проблемой, думает: «А, точно, надо применить регулярные выражения ». И вот у него уже две проблемы - Джейми Завински.

Иной программист, столкнувшись с проблемой, думает: «А, точно, применю-ка я здесь потоки». И вот у него уже десять проблем - Билл Шиндлер.

Слишком многие программисты, берущиеся писать многопоточный код, попадают впросак, как герой баллады Гёте «Ученик чародея ». Программист научится создавать пучок потоков, которые в принципе работают, но рано или поздно они выходят из-под контроля, и программист не знает, что делать.

Но в отличие от волшебника-недоучки несчастный программист не может надеяться на приход могучего чародея, который взмахнет волшебной палочкой и восстановит порядок. Вместо этого программист идет на самые неприглядные уловки, пытаясь справиться с постоянно возникающими проблемами. Результат всегда одинаков: получается чрезмерно усложненное, ограниченное, хрупкое и ненадежное приложение. В нем постоянно сохраняется угроза взаимной блокировки и существуют другие опасности, свойственные плохому многопоточному коду. Я уже не говорю о необъяснимых аварийных завершениях, плохой производительности, неполных или некорректных результатах работы.

Возможно, вы задавались вопросом: а почему это происходит? Распространено такое ошибочное мнение: «Многопоточное программирование очень сложное». Но это не так. Если многопоточная программа ненадежна, то она обычно барахлит по тем же причинам, что и некачественные однопоточные программы. Просто программист не следует основополагающим, давно известным и проверенным методам разработки. Многопоточные программы лишь кажутся более сложными, так как чем больше параллельных потоков работают неправильно, тем больший беспорядок они учиняют - и гораздо быстрее, чем это сделал бы один поток.

Заблуждение о «сложности многопоточного программирования» широко распространилось из-за тех разработчиков, которые профессионально сложились на написании однопоточного кода, впервые столкнулись с многопоточностью и не справились с ней. Но вместо того, чтобы пересмотреть свои предубеждения и привычные приемы работы, они упрямо фиксят то, что никак не хочет работать. Оправдываясь за ненадежный софт и сорванные сроки, эти люди твердят одно и то же: «многопоточное программирование очень сложное».

Обратите внимание: выше я говорю о типичных программах, в которых используется многопоточность. Действительно, существуют сложные многопоточные сценарии - как и сложные однопоточные. Но они встречаются нечасто. Как правило, на практике от программиста не требуется ничего сверхъестественного. Мы перемещаем данные, преобразуем их, время от времени выполняем те или иные вычисления и, наконец, сохраняем информацию в базе данных или отображаем ее на экране.

Нет ничего сложного в усовершенствовании среднестатистической однопоточной программы и превращении ее в многопоточную. По крайней мере не должно быть. Сложности возникают по двум причинам:

  • программисты не умеют применять простые, давно известные проверенные методы разработки;
  • большинство сведений, излагаемых в книгах по многопоточному программированию, технически верны, но совершенно неприменимы при решении прикладных задач.

Самые важные концепции программирования универсальны. Они в равной степени применимы к однопоточным и к многопоточным программам. Программисты, тонущие в водовороте потоков, просто не усвоили важных уроков, еще когда осваивали однопоточный код. Я могу это утверждать потому, что такие разработчики совершают в многопоточных и однопоточных программах одни и те же фундаментальные ошибки.

Пожалуй, самый важный урок, который следовало выучить за шестидесятилетнюю историю программирования, формулируется так: глобальное изменяемое состояние - зло . Настоящее зло. О программах, зависящих от глобального изменяемого состояния, сравнительно сложно рассуждать, а в целом они отличаются ненадежностью, поскольку существует слишком много способов изменения состояния. Выполнена масса исследований, подтверждающих этот общий принцип, существуют бесчисленные паттерны проектирования, основная цель которых - реализовать тот или иной способ сокрытия данных. Чтобы ваши программы были более предсказуемыми, старайтесь в максимальной степени устранить в них изменяемое состояние.

В однопоточной последовательной программе вероятность искажения данных прямо пропорциональна количеству компонентов, которые могут изменять эти данные.

Как правило, полностью избавиться от глобального состояния не удается, но в арсенале разработчика есть очень эффективные инструменты, позволяющие строго контролировать, какие компоненты программы могут изменять состояние. Кроме того, мы научились создавать ограничительные слои API вокруг примитивных структур данных. Поэтому мы хорошо контролируем, как изменяются эти структуры данных.

Проблемы глобального изменяемого состояния постепенно стали очевидными в конце 80-х и начале 90-х, с распространением событийно-ориентированного программирования. Программы больше не начинались «с начала» и не проходили единственный предсказуемый путь выполнения «до конца». У современных программ есть исходное состояние, после выхода из которого в них происходят события - в непредсказуемом порядке, с переменными временными интервалами. Код остается однопоточным, но уже становится асинхронным. Вероятность искажения данных возрастает именно потому, что порядок возникновения событий очень важен. Сплошь и рядом встречаются ситуации такого рода: если событие B происходит после события A, то все работает нормально. Но если событие A произойдет после события B, а между ними успеет вклиниться событие C, то данные могут быть искажены до неузнаваемости.

Если задействуются параллельные потоки, проблема еще больше усугубляется, так как сразу несколько методов могут одновременно оперировать глобальным состоянием. Становится невозможно судить о том, как именно изменяется глобальное состояние. Речь уже идет не только о том, что события могут происходить в непредсказуемом порядке, но и о том, что состояние нескольких потоков выполнения может обновляться одновременно . При асинхронном программировании вы, как минимум, можете гарантировать, что определенное событие сможет произойти не раньше, чем закончится обработка другого события. То есть можно с определенностью сказать, каким будет глобальное состояние на момент окончания обработки конкретного события. В многопоточном коде, как правило, невозможно сказать, какие события будут происходить параллельно, поэтому невозможно с определенностью описать глобальное состояние в любой момент времени.

Многопоточная программа с обширным глобальным изменяемым состоянием - это один из наиболее красноречивых известных мне примеров принципа неопределенности Гейзенберга. Невозможно проверить состояние программы, не изменив при этом ее поведение.

Когда я начинаю очередную филиппику о глобальном изменяемом состоянии (суть изложена в нескольких предыдущих абзацах), программисты закатывают глаза и уверяют меня, что все это им давно известно. Но если это вам известно - почему этого не скажешь по вашему коду? Программы нашпигованы глобальным изменяемым состоянием, а программисты удивляются, почему код не работает.

Неудивительно, что самая важная работа при многопоточном программировании происходит на этапе проектирования. Требуется четко определить, что должна делать программа, разработать для выполнения всех функций независимые модули, детально описать, какие данные требуются какому модулю, и определить пути обмена информацией между модулями (Да, еще не забудьте подготовить красивые футболки для всех участников проекта. Первым делом. - прим. ред. в оригинале ). Этот процесс принципиально не отличается от проектирования однопоточной программы. Ключ к успеху, как и в случае с однопоточным кодом - ограничить взаимодействия между модулями. Если удастся избавиться от разделяемого изменяемого состояния, то проблемы совместного доступа к данным просто не возникнут.

Кто-то может возразить, что иногда нет времени на такое филигранное проектирование программы, которое позволит обойтись без глобального состояния. Я же считаю, что на это можно и нужно тратить время. Ничто не сказывается на многопоточных программах так губительно, как попытки справиться с глобальным изменяемым состоянием. Чем большим количеством деталей приходится управлять, тем выше вероятность, что ваша программа войдет в пике и рухнет.

В реалистичных прикладных программах должно существовать определенное разделяемое состояние, которое может изменяться. И вот тут у большинства программистов начинаются проблемы. Программист видит, что здесь требуется разделяемое состояние, обращается к многопоточному арсеналу и берет оттуда самый простой инструмент: универсальную блокировку (критическая секция, мьютекс или как это у них еще называется). Они, видимо, полагают, что взаимное исключение решит все проблемы с совместным доступом к данным.

Количество проблем, которые могут возникнуть при такой единой блокировке, просто ошеломляет. Необходимо учесть и условия гонки, и проблемы пропускания (gating problems) при чрезмерно обширной блокировки, и вопросы, связанные со справедливостью распределения - вот лишь несколько примеров. Если же у вас несколько блокировок, в особенности если они вложенные, то также придется принять меры против взаимной блокировки, динамической взаимной блокировки, очередей на блокировку, а также исключить другие угрозы, связанные с параллелизмом. К тому же существуют и характерные проблемы одиночной блокировки.
Когда я пишу или проверяю код, я руководствуюсь практически безотказным железным правилом: если вы сделали блокировку, то, по-видимому, где-то допустили ошибку .

Это утверждение можно прокомментировать двумя способами:

  1. Если вам понадобилась блокировка, то, вероятно, у вас присутствует глобальное изменяемое состояние, которое требуется защитить от параллельных обновлений. Наличие глобального изменяемого состояния - это недоработка, допущенная на этапе проектирования приложения. Пересмотрите и измените дизайн.
  2. Правильно пользоваться блокировками нелегко, а локализовать баги, связанные с блокировкой, бывает невероятно сложно. Весьма вероятно, что вы будете использовать блокировку неправильно. Если я вижу блокировку, а программа при этом необычно себя ведет, то я первым делом проверяю код, зависящий от блокировки. И обычно нахожу в нем проблемы.

Обе эти интерпретации корректны.

Писать многопоточный код несложно. Но очень, очень сложно правильно использовать синхронизационные примитивы. Возможно, вам не хватает квалификации для правильного использования даже одной блокировки. Ведь блокировки и другие синхронизационные примитивы - это конструкции, возводимые на уровне всей системы. Люди, которые разбираются в параллельном программировании гораздо лучше вас, пользуются этими примитивами для построения конкурентных структур данных и высокоуровневых синхронизационных конструктов. А мы с вами, обычные программисты, просто берем такие конструкции и используем в нашем коде. Программист, пишущий приложения, должен использовать низкоуровневые синхронизационные примитивы не чаще, чем он делает непосредственные вызовы драйверов устройств. То есть практически никогда.

Пытаясь при помощи блокировок решать проблемы совместного доступа к данным, вы как будто тушите пожар жидким кислородом. Как и пожар, такие проблемы легче предотвратить, чем устранить. Если вы избавитесь от разделяемого состояния, то не придется и злоупотреблять синхронизационными примитивами.

Большинство того, что вы знаете о многопоточности, не имеет значения

В пособиях по многопоточности для начинающих вы узнаете, что такое потоки. Потом автор начнет рассматривать различные способы, которыми можно наладить параллельную работу этих потоков - например, расскажет о контроле доступа к разделяемым данным при помощи блокировок и семафоров, остановится на том, какие вещи могут произойти при работе с событиями. Подробно рассмотрит условные переменные, барьеры памяти, критические секции, мьютексы, volatile-поля и атомарные операции. Будут рассмотрены примеры того, как использовать эти низкоуровневые конструкции для выполнения всевозможных системных операций. Дочитав этот материал до половины, программист решает, что уже достаточно знает обо всех этих примитивах и об их применении. В конце концов, если я знаю, как эта штука работает на системном уровне, то смогу таким же образом применить ее и на уровне приложения. Да?

Представьте себе, что вы рассказали подростку, как самому собрать двигатель внутреннего сгорания. Затем без всякого обучения вождению вы сажаете его за руль автомобиля и говорите: «Езжай»! Подросток понимает, как работает машина, но не имеет ни малейшего представления о том, как добраться на ней из точки A в точку B.

Понимание того, как потоки работают на системном уровне, обычно никак не помогает использовать их на уровне приложения. Я не утверждаю, что программистам не нужно учить все эти низкоуровневые детали. Просто не рассчитывайте, что сможете с ходу применить эти знания при проектировании или разработке бизнес-приложения.

Во вводной литературе на тему многопоточности (а также в соответствующих академических курсах) не следует изучать такие низкоуровневые конструкции. Нужно сосредоточиться на решении самых распространенных классов проблем и показать разработчикам, как такие задачи решаются при помощи высокоуровневых возможностей. В принципе большинство бизнес-приложений - это исключительно простые программы. Они считывают данные с одного или нескольких устройств ввода, выполняют какую-либо сложную обработку этих данных (например, в процессе работы запрашивают еще какие-то данные), а затем выводят результаты.

Зачастую такие программы отлично вписываются в модель «поставщик-потребитель», требующую применения всего трех потоков:

  • поток ввода считывает данные и помещает их в очередь ввода;
  • рабочий поток считывает записи из очереди ввода, обрабатывает их и помещает результаты в очередь вывода;
  • поток вывода считывает записи из очереди вывода и сохраняет их.

Три этих потока работают независимо, коммуникация между ними происходит на уровне очередей.

Хотя технически эти очереди можно считать зонами разделяемого состояния, на практике они представляют собой всего лишь коммуникационные каналы, в которых действует собственная внутренняя синхронизация. Очереди поддерживают работу сразу со многими производителями и потребителями, в них можно параллельно добавлять и удалять элементы.

Поскольку этапы ввода, обработки и вывода изолированы между собой, их реализацию несложно менять, не затрагивая остальной части программы. Пока не меняется тип данных, находящихся в очереди, можно по своему усмотрению выполнять рефакторинг отдельных компонентов программы. Кроме того, поскольку в работе очереди участвует произвольное число поставщиков и потребителей, не составит труда добавить и другие производители/потребители. У нас могут быть десятки потоков ввода, записывающих информацию в одну и ту же очередь, либо десятки рабочих потоков, забирающих информацию из очереди ввода и переваривающих данные. В рамках одного компьютера такая модель хорошо масштабируется.

Но самое важное заключается в том, что современные языки программирования и библиотеки очень упрощают создание приложений по модели «производитель-потребитель». В .NET вы найдете параллельные коллекции и библиотеку TPL Dataflow. В Java есть сервис Executor, а также BlockingQueue и другие классы из пространства имен java.util.concurrent. В С++ есть библиотека Boost для работы с потоками и библиотека Thread Building Blocks от Intel. В Visual Studio 2013 от Microsoft появились асинхронные агенты. Подобные библиотеки также имеются в Python, JavaScript, Ruby, PHP и, насколько мне известно, во многих других языках. Вы сможете создать приложение вида «производитель-потребитель» при помощи любого из этих пакетов, ни разу не прибегая к блокировкам, семафорам, условным переменным или каким-либо другим синхронизационным примитивам.

В этих библиотеках свободно используются самые разные синхронизационные примитивы. Это нормально. Все перечисленные библиотеки написаны людьми, которые разбираются в многопоточности несравнимо лучше среднего программиста. Работа с подобной библиотекой практически не отличается от использования языковой библиотеки времени исполнения. Это можно сравнить с программированием на высокоуровневом языке, а не на ассемблере.

Модель «поставщик-потребитель» - всего один из многих примеров. В вышеперечисленных библиотеках содержатся классы, при помощи которых можно реализовать многие распространенные паттерны многопоточного проектирования, не вдаваясь при этом в низкоуровневые детали. Можно создавать масштабные многопоточные приложения, практически не заморачиваясь о том, как именно координируются потоки проходит синхронизация.

Работайте с библиотеками

Итак, создание многопоточных программ ничем принципиально не отличается от написания однопоточных синхронных программ. Важные принципы инкапсуляции и сокрытия данных универсальны, и их значение лишь возрастает, когда в работе участвует множество параллельных потоков. Если пренебрегать этими важными аспектами, то вас не спасут даже самые исчерпывающие знания низкоуровневого обращения с потоками.

Современным разработчикам приходится решать массу задач на уровне программирования приложений, бывает, что просто некогда задумываться о том, что происходит на системном уровне. Чем затейливее становятся приложения, тем более сложные детали приходится скрывать между уровнями API. Мы занимаемся этим уже не один десяток лет. Можно утверждать, что качественное скрытие сложности системы от программиста - основная причина, по которой программисту удается писать современные приложения. Если уж на то пошло - разве мы не скрываем сложность системы, реализуя цикл сообщений пользовательского интерфейса, выстраивая низкоуровневые протоколы обмена информацией и т.д.?

С многопоточностью складывается аналогичная ситуация. Большинство многопоточных сценариев, с которыми может столкнуться средний программист бизнес-приложений, уже хорошо известны и качественно реализованы в библиотеках. Библиотечные функции отлично скрывают ошеломляющую сложность параллелизма. Этими библиотеками нужно научиться пользоваться точно так же, как вы пользуетесь библиотеками элементов пользовательского интерфейса, протоколами связи и многочисленными другими инструментами, которые просто работают. Оставьте низкоуровневую многопоточность специалистам - авторам библиотек, применяемых при создании прикладных программ.

конец файла . Таким образом, записи в логе, выполняемые разными процессами, никогда несмешиваются. В более современныхUnix-системах для ведения логов предоставляется специальный сервис syslog(3C) .

Преимущества:

  1. Простота разработки. Фактически, мы запускаем много копий однопоточного приложения и они работают независимо друг от друга. Можно не использовать никаких специфически многопоточных API и средств межпроцессного взаимодействия .
  2. Высокая надежность. Аварийное завершение любого из процессов никак не затрагивает остальные процессы.
  3. Хорошая переносимость. Приложение будет работать налюбой многозадачной ОС
  4. Высокая безопасность. Разные процессы приложения могут запускаться от имени разных пользователей. Таким образом можно реализовать принцип минимальных привилегий, когда каждый из процессов имеет лишь те права, которые необходимы ему для работы. Даже если в каком-то из процессов будет обнаружена ошибка, допускающая удаленное исполнение кода, взломщик сможет получить лишь уровень доступа, с которым исполнялся этот процесс.

Недостатки:

  1. Далеко не все прикладные задачи можно предоставлять таким образом. Например, эта архитектура годится для сервера, занимающегося раздачей статических HTMLстраниц, но совсем непригодна для сервера баз данных и многих серверов приложений.
  2. Создание и уничтожение процессов – дорогая операция, поэтому для многих задач такая архитектура неоптимальна.

В Unix-системах предпринимается целый комплекс мер для того, чтобы сделать создание процесса и запуск новой программы в процессе как можно более дешевыми операциями. Однако нужно понимать, что создание нити в рамках существующего процесса всегда будет дешевле, чем создание нового процесса.

Примеры: apache 1.x ( сервер HTTP )

Многопроцессные приложения, взаимодействующие через сокеты, трубы и очереди сообщений System V IPC

Перечисленные средства IPC ( Interprocess communication ) относятся к так называемым средствам гармонического межпроцессного взаимодействия. Онипозволяют организовать взаимодействие процессов и потоков без использования разделяемой памяти. Теоретики программирования очень любят эту архитектуру, потому что она практически исключает многие варианты ошибок соревнования.

Преимущества:

  1. Относительная простота разработки.
  2. Высокая надежность. Аварийное завершение одного из процессов приводит к закрытию трубы или сокета, а в случае очередей сообщений – к тому, что сообщения перестают поступать в очередь или извлекаться из нее. Остальные процессы приложения легко могут обнаружить эту ошибку и восстановиться после нее, возможно (но не обязательно) просто перезапустив отказавший процесс.
  3. Многие такие приложения (особенно основанные на использовании сокетов) легко переделываются для исполненияв распределенной среде, когда разные компоненты приложения исполняются на разных машинах.
  4. Хорошая переносимость. Приложение будет работать на большинстве многозадачных ОС, в том числе на старых Unix-системах.
  5. Высокая безопасность. Разные процессы приложения могут запускаться от имени разных пользователей. Таким образом можно реализовать принцип минимальных привилегий, когда каждый из процессов имеет лишь те права, которые необходимы ему для работы.

Даже если в каком-то из процессов будет обнаружена ошибка, допускающая удаленное исполнение кода, взломщик сможет получить лишь уровень доступа, с которым исполнялся этот процесс.

Недостатки:

  1. Не для всех прикладных задач такую архитектуру легко разработать и реализовать.
  2. Все перечисленные типы средств IPC предполагают последовательную передачу данных. Если необходим произвольный доступ к разделяемым данным, такая архитектура неудобна.
  3. Передача данных через трубу, сокет и очередь сообщений требует исполнения системных вызовов и двойного копирования данных – сначала из адресного пространства исходного процесса в адресное пространство ядра, затем из адресного пространства ядра в память целевого процесса . Это дорогие операции. При передаче больших объемов данных это может превратиться в серьезную проблему.
  4. В большинстве систем действуют ограничения на общее количество труб, сокетов и средств IPC. Так, в Solaris по умолчанию допускается не более 1024 открытых труб, сокетов и файлов на процесс (это обусловлено ограничениями системного вызова select). Архитектурное ограничение Solaris – 65536 труб, сокетов и файлов на процесс.

    Ограничение на общее количество сокетов TCP/IP – не более 65536 на сетевой интерфейс (обусловлено форматом заголовков TCP). Очереди сообщений System V IPC размещаются вадресном пространствеядра, поэтому действуют жесткиеограничения на количество очередей в системе и на объем и количество одновременно находящихся в очередях сообщений.

  5. Создание и уничтожение процесса, а также переключение между процессами – дорогие операции. Не во всех случаях такая архитектура оптимальна.

Многопроцессные приложения, взаимодействующие через разделяемую память

В качестве разделяемой памяти может использоваться разделяемая память System V IPC и отображение файлов на память . Для синхронизации доступа можно использовать семафоры System V IPC , мутексы и семафоры POSIX , при отображении файлов на память – захват участков файла.

Преимущества:

  1. Эффективный произвольный доступ к разделяемым данным. Такая архитектура пригодна для реализации серверов баз данных.
  2. Высокая переносимость. Может быть перенесено налюбую операционную систему, поддерживающую или эмулирующую System V IPC .
  3. Относительно высокая безопасность. Разные процессыприложениямогут запускаться от имени разных пользователей. Таким образом можно реализовать принцип минимальных привилегий, когда каждый из процессов имеет лишь те права, которые необходимы ему для работы. Однако разделение уровней доступа не такое жесткое, как в ранее рассмотренных архитектурах.

Недостатки:

  1. Относительная сложность разработки. Ошибки при синхронизации доступа – так называемые ошибки соревнования – очень сложно обнаруживать при тестировании.

    Это может привести к повышению общей стоимости разработки в 3–5 раз по сравнению с однопоточными или более простыми многозадачными архитектурами.

  2. Низкая надежность. Аварийное завершение любого из процессов приложения может оставить (и часто оставляет) разделяемую память в несогласованном состоянии.

    Это часто приводит к аварийному завершению остальных задач приложения. Некоторые приложения, например Lotus Domino, специально убивают всесерверные процессы при аварийном завершении любого из них.

  3. Создание и уничтожение процесса и переключение между ними – дорогие операции.

    Поэтому данная архитектура оптимальна не для всех приложений.

  4. При определенных обстоятельствах, использование разделяемой памяти может приводить к эскалации привилегий. Если в одном из процессов будет найдена ошибка, приводящая к удаленному исполнению кода, с высокой вероятностью взломщик сможет ее использовать для удаленного исполнения кода в других процессах приложения.

    То есть, в худшем случае, взломщик может получить уровень доступа, соответствующий наивысшему из уровней доступа процессов приложения.

  5. Приложения, использующие разделяемую память, должны исполняться на одном физическом компьютереили, во всяком случае, на машинах, имеющих разделяемое ОЗУ. В действительности, это ограничение можно обойти, например используя отображенные на память разделяемые файлы, но это приводит к значительным накладным расходам

Фактически, данная архитектура сочетает недостатки многопроцессных и собственно многопоточных приложений. Тем не менее, ряд популярных приложений, разработанных в 80е и начале 90х, до того, как в Unix были стандартизованы многопоточные API , используют эту архитектуру. Это многие серверы баз данных, как коммерческие ( Oracle , DB2 , Lotus Domino), такисвободно распространяемые,современные версии Sendmail инекоторые другие почтовые серверы.

Собственно многопоточные приложения

Потоки или нити приложения исполняются в пределах одного процесса. Все адресное пространство процесса разделяется между потоками. На первый взгляд кажется, что это позволяет организовать взаимодействие между потоками вообще без каких-либо специальных API . В действительности, это не так – если несколько потоков работает с разделяемой структурой данных или системным ресурсом, и хотя бы один из потоков модифицирует эту структуру, то в некоторые моменты времени данные будут несогласованными.

Поэтому потоки должны использовать специальные средства для организации взаимодействия. Наиболее важные средства – это примитивы взаимоисключения (мутексы и блокировки чтения-записи). Используя эти примитивы, программист может добиться того, чтобы ни один поток не обращался к разделяемым ресурсам, пока они находятся в несогласованном состоянии (это и называется взаимоисключением). System V IPC , разделяются только те структуры, которые размещены в сегменте разделяемой памяти. Обычные переменные и размещаемые обычным образом динамические структуры данных свои укаждого изпроцессов). Ошибки придоступекразделяемым данным – ошибки соревнования – очень сложно обнаруживать при тестировании.

  • Высокая стоимость разработки и отладки приложений, обусловленная п. 1.
  • Низкая надежность. Разрушение структур данных, например в результате переполнения буфера или ошибок работы с указателями, затрагивает все нити процесса и обычно приводит к аварийному завершению всего процесса. Другие фатальные ошибки, например, деление на ноль в одной из нитей, также обычно приводят к аварийной остановке всех нитей процесса.
  • Низкая безопасность. Все нити приложения исполняются в одном процессе, то есть от имени одного и того же пользователя и с одними и теми же правами доступа. Невозможно реализовать принцип минимума необходимых привилегий, процесс должен исполняться от имени пользователя, который может исполнять все операции, необходимые всем нитям приложения.
  • Создание нити – все-таки довольно дорогая операция. Для каждой нити в обязательном порядке выделяется свой стек, который по умолчанию занимает 1 мегабайт ОЗУ на 32битных архитектурах и 2 мегабайта на 64-битных архитектурах, и некоторые другие ресурсы. Поэтому данная архитектура оптимальна не для всех приложений.
  • Невозможность исполнять приложение на многомашинном вычислительном комплексе. Упоминавшиеся в предыдущем разделе приемы, такие, как отображение на память разделяемых файлов, для многопоточной программы не применимы.
  • В целом можно сказать, что многопоточные приложения имеют почти те же преимущества и недостатки, что и многопроцессные приложения, использующие разделяемую память .

    Однако стоимость исполнения многопоточного приложения ниже, а разработка такого приложения в некоторых отношениях проще, чем приложения, основанного наразделяемой памяти. Поэтому в последние годы многопоточные приложения становятся все более и более популярны.

    Андрей Колесов

    Приступая к рассмотрению принципов создания многопоточных приложений для среды Microsoft .NET Framework, сразу оговоримся: хотя все примеры приведены на Visual Basic .NET, методика создания таких программ в целом одинакова для всех языков программирования, поддерживающих.NET, в том числе для C#. VB выбран для демонстрации технологии создания многопоточных приложений в первую очередь потому, что предыдущие версии этого инструмента такой возможности не предоставляли.

    Осторожно: Visual Basic .NET тоже может делать ЭТО!

    Как известно, Visual Basic (до версии 6.0 включительно) никогда ранее не позволял создавать многопоточные программные компоненты (EXE, ActiveX DLL и OCX). Тут нужно вспомнить, что архитектура COM включает три разные потоковые модели: однопоточную (Single Thread), совместную (Single Threaded Apartment, STA) и свободную (Multi-Threaded Apartment). VB 6.0 позволяет создавать программы первых двух типов. Вариант STA предусматривает псевдомногопоточный режим - несколько потоков действительно работают параллельно, но при этом программный код каждого из них защищен от доступа к нему извне (в частности, потоки не могут использовать общие ресурсы).

    Visual Basic .NET теперь может реализовать свободную многопоточность в ее настоящем (native) варианте. Точнее сказать, в.NET такой режим поддерживается на уровне общих библиотек классов Class Library и среды исполнения Common Language Runtime. В результате VB.NET наравне с другими языками программирования.NET получил доступ к этим возможностям.

    В свое время сообщество VB-разработчиков, выражая недовольство многими будущими новшествами этого языка, с большим одобрением отнеслось к известию о том, что с помощью новой версии инструмента можно будет создавать многопоточные программы (см. "В ожидании Visual Studio .NET", "BYTE/Россия" № 1/2001). Однако многие эксперты высказывали более сдержанные оценки по поводу этого новшества. Вот, например, мнение Дана Эпплмана (Dan Appleman), известного разработчика и автора многочисленных книг для VB-программистов: "Многопоточность в VB.NET страшит меня больше, чем все остальные новшества, причем, как и во многих новых технологиях.NET, это объясняется скорее человеческими, нежели технологическими факторами... Я боюсь многопоточности в VB.NET, потому что VB-программисты обычно не обладают опытом проектирования и отладки многопоточных приложений" .

    Действительно, как и прочие средства низкоуровневого программирования (например, те же интерфейсы Win API), свободная многопоточность, с одной стороны, предоставляет более широкие возможности для создания высокопроизводительных масштабируемых решений, а с другой - предъявляет более высокие требования к квалификации разработчиков. Причем проблема тут усугубляется тем, что поиск ошибок в многопоточном приложении весьма сложен, так как они проявляются чаще всего случайным образом, в результате специфического пересечения параллельных вычислительных процессов (воспроизвести еще раз такую ситуацию зачастую бывает просто невозможно). Именно поэтому методы традиционной отладки программ в виде их повторного прогона в данном случае обычно не помогают. И единственный путь к безопасному применению многопоточности - это качественное проектирование приложения с соблюдением всех классических принципов "правильного программирования".

    Проблема же с VB-программистами заключается еще и в том, что хотя многие из них - достаточно опытные профессионалы и отлично знают о подводных камнях многопоточности, использование VB6 могло притупить их бдительность. Ведь, обвиняя VB в ограниченности, мы порой забываем, что многие ограничения определялись улучшенными средствами безопасности этого инструмента, которые предупреждают или исключают ошибки разработчика. Например, VB6 автоматически создает отдельную копию всех глобальных переменных для каждого потока, предупреждая таким образом возможные конфликты между ними. В VB.NET подобные проблемы полностью перекладываются на плечи программиста. При этом следует также помнить, что применение многопоточной модели вместо однопоточной далеко не всегда приводит к повышению производительности программы, производительность может даже снизиться (даже в многопроцессорных системах!).

    Однако все сказанное выше не нужно рассматривать как совет не связываться с многопоточностью. Просто нужно хорошо представлять, когда такие режимы стоит применять, и понимать, что более мощное средство разработки всегда предъявляет более высокие требования к квалификации программиста.

    Параллельная обработка в VB6

    Конечно, организовать псевдопараллельную обработку данных можно было и с помощью VB6, но возможности эти были весьма ограниченными. Например, мне несколько лет назад понадобилось написать процедуру, которая приостанавливает выполнение программы на указанное число секунд (соответствующий оператор SLEEP в готовом виде присутствовал в Microsoft Basic/DOS). Ее нетрудно реализовать самостоятельно в виде следующей простой подпрограммы:

    В ее работоспособности можно легко убедиться, например, с помощью такого кода обработки щелчка кнопки на форме:

    Чтобы решить эту проблему в VB6, внутри цикла Do...Loop процедуры SleepVB нужно снять комментарий с обращения к функции DoEvents, которая передает управление операционной системе и возвращает число открытых форм в данном VB-приложении. Но обратите внимание, что вывод окна с сообщением "Еще один привет!", в свою очередь, блокирует выполнение всего приложения, в том числе и процедуры SleepVB.

    Используя глобальные переменные в качестве флагов, можно обеспечить также аварийное завершение запущенной процедуры SleepVB. Она, в свою очередь, представляет собой простейший пример вычислительного процесса, полностью занимающего ресурсы процессора. Но если вы будете совершать какие-то полезные вычисления (а не крутиться в пустом цикле), то нужно иметь в виду, что обращение к функции DoEvent занимает довольно много времени, поэтому это нужно делать через достаточно большие интервалы времени.

    Чтобы увидеть ограниченность поддержки параллельных вычислений в VB6, замените обращение к функции DoEvents на вывод метки:

    Label1.Caption = Timer

    В этом случае не только не будет срабатывать кнопка Command2, но даже в течение 5 с не будет изменяться содержание метки.

    Для проведения еще одного эксперимента добавьте вызов ожидания в код для Command2 (это можно сделать, так как процедура SleepVB реентерабельна):

    Private Sub Command2_Click() Call SleepVB(5) MsgBox "Еще один привет!" End Sub

    Далее запустите приложение и щелкните Command1, а спустя 2-3 с - Command2. Первым появится сообщение "Еще один привет"!, хотя соответствующий процесс был запущен позднее. Причина этого в том, что функция DoEvents проверяет только события визуальных элементов, но не наличие других вычислительных потоков. Более того, VB-приложение фактически работает в одном потоке, поэтому управление вернулось в событийную процедуру, которая была запущена последней.

    Управление потоками в.NET

    Построение многопоточных.NET-приложений основывается на использовании группы базовых классов.NET Framework, описываемых пространством имен System.Threading. При этом ключевая роль принадлежит классу Thread, с помощью которого выполняются практически все операции по управлению потоками. С этого места все сказанное о работе с потоками относится ко всем средствам программирования в.NET, в том числе к C#.

    Для первого знакомства с созданием параллельных потоков создадим Windows-приложение с формой, на которой разместим кнопки ButtonStart и ButtonAbort и напишем следующий код:

    Сразу же хотелось бы обратить внимание на три момента. Во-первых, ключевые слова Imports используются для обращения к сокращенным именам классов, описанных здесь пространством имен. Я специально привел еще один вариант применения Imports для описания сокращенного эквивалента длинного названия пространства имен (VB = Microsoft.VisualBasic), который можно применить к тексту программы. В этом случае сразу видно, к какому пространству имен относится объект Timer.

    Во-вторых, я использовал логические скобки #Region, чтобы наглядно отделить код, написанный мной, от кода, формируемого дизайнером форм автоматически (последний здесь не приводится).

    В-третьих, описания входных параметров событийных процедур специально убраны (так будет делаться иногда и далее), чтобы не отвлекаться на вещи, которые в данном случае не важны.

    Запустите приложение и щелкните кнопку ButtonStart. Запустился процесс ожидания в цикле заданного интервала времени, причем в данном случае (в отличие от примера с VB6) - в независимом потоке. В этом легко убедиться - все визуальные элементы формы являются доступными. Например, нажав кнопку ButtonAbort, можно аварийно завершить процесс с помощью метода Abort (но закрытие формы с помощью системной кнопки Close не прервет выполнение процедуры!). Для наглядности динамики процесса вы можете разместить на форме метку, а в цикл ожидания процедуры SleepVBNET добавить вывод текущего времени:

    Label1.Text = _ "Текущее время = " & VB.TimeOfDay

    Выполнение процедуры SleepVBNET (которая в данном случае уже представляет собой метод нового объекта) будет продолжаться, даже если вы добавите в код ButtonStart вывод окна сообщения о начале вычислений после запуска потока (рис. 1).

    Более сложный вариант - поток в виде класса

    Для проведения дальнейших экспериментов с потоками создадим новое VB-приложение типа Console, состоящее из обычного модуля кода с процедурой Main (которая начинает выполняться при запуске приложения) и модуля класса WorkerThreadClass:

    Запустим созданное приложение. Появится консольное окно, в котором будет видна бегущая строка символов, демонстрирующая модель запущенного вычислительного процесса (WorkerThread). Потом появится окно сообщения, выданного вызывающим процессом (Main), и в завершение мы увидим картинку, изображенную на рис. 2 (если вас не устраивает скорость выполнения моделируемого процесса, то уберите или добавьте какие-нибудь арифметические операции с переменной "а" в процедуре WorkerThread).

    Обратите внимание: окно сообщения "Запущен первый поток" было выдано на экран с заметной задержкой, после старта процесса WorkerThread (в случае с формой, описанном в предыдущем пункте, такое сообщение появилось бы почти мгновенно после нажатия кнопки ButtonStart). Скорее всего, это происходит потому, что при работе с формой событийные процедуры имеют более высокий приоритет по сравнению с запускаемым процессом. В случае же консольного приложения все процедуры имеют одинаковый приоритет. Вопрос приоритетов мы обсудим позднее, а пока установим для вызывающего потока (Main) самый высокий приоритет:

    Thread.CurrentThread.Priority = _ ThreadPriority.Highest Thread1.Start()

    Теперь окно появляется почти сразу. Как видим, создавать экземпляры объекта Thread можно двумя способами. Сначала мы применяли первый из них - создали новый объект (поток) Thread1 и работали с ним. Второй вариант - получить объект Thread для выполняемого в данный момент потока с помощью статического метода CurrentThread. Именно таким образом процедура Main сама для себя установила более высокий приоритет, но могла она это сделать и для любого другого потока, например:

    Thread1.Priority = ThreadPriority.Lowest Thread1.Start()

    Чтобы показать возможности управления запущенным процессом, добавим в конце процедуры Main такие строчки кода:

    Теперь запустите приложение, одновременно выполняя некоторые операции с мышью (надеюсь, вы выбрали нужный уровень задержки в WorkerThread, чтобы процесс был не очень быстрым, но и не слишком медленным).

    Сначала в консольном окне начнется "Процесс 1", и появится сообщение "Первый поток запущен". "Процесс 1" выполняется, а вы быстренько нажмите кнопку ОК в окне сообщения.

    Далее - "Процесс 1" продолжается, но через две секунды появляется сообщение "Поток приостановлен". "Процесс 1" замер. Нажмите кнопку "ОК" в окне сообщения: "Процесс 1" продолжил свое выполнение и успешно завершил его.

    В этом фрагменте мы использовали метод Sleep для приостановки текущего процесса. Заметьте: Sleep является статическим методом и может применяться только к текущему процессу, но не к какому-то экземпляру объекта Thread. Синтаксис языка позволяет написать Thread1.Sleep или Thread.Sleep, но все равно в этом случае используется объект CurrentThread.

    Метод Sleep может также использовать аргумент 0. В этом случае текущий поток освободит неиспользованный остаток кванта выделенного для него времени.

    Еще один интересный вариант использования Sleep - со значением Timeout.Infinite. В этом случае поток будет приостановлен на неопределенный срок, пока это состояние не будет прервано другим потоком с помощью метода Thread.Interrupt.

    Чтобы приостановить внешний поток из другого потока без остановки последнего, нужно использовать вызов метода Thread.Suspend. Тогда продолжить его выполнение можно будет методом Thread.Resume, что мы и сделали в приведенном выше коде.

    Немного о синхронизации потоков

    Синхронизация потоков - это одна из главных задач при написании многопоточных приложений, и в пространстве System.Threading имеется большой набор средств для ее решения. Но сейчас мы познакомимся только с методом Thread.Join, который позволяет отлеживать окончание выполнение потока. Чтобы увидеть, как он работает, замените последние строки процедуры Main на такой код:

    Управление приоритетами процессов

    Распределение квантов времени процессора между потоками выполняется с помощью приоритетов, которые задаются в виде свойства Thread.Priority. Для потоков, создаваемых в период выполнения, можно устанавливать пять значений: Highest, AboveNormal, Normal (используется по умолчанию), BelowNormal и Lowest. Чтобы посмотреть, как влияют приоритеты на скорость выполнения потоков, напишем такой код для процедуры Main:

    Sub Main() " описание первого процесса Dim Thread1 As Thread Dim oWorker1 As New WorkerThreadClass() Thread1 = New Thread(AddressOf _ oWorker1.WorkerThread) " Thread1.Priority = _ " ThreadPriority.BelowNormal " передаем исходные данные: oWorker1.Start = 1 oWorker1.Finish = 10 oWorker1.ThreadName = "Отсчет 1" oWorker1.SymThread = "." " описание второго процесса Dim Thread2 As Thread Dim oWorker2 As New WorkerThreadClass() Thread2 = New Thread(AddressOf _ oWorker2.WorkerThread) " передаем исходные данные: oWorker2.Start = 11 oWorker2.Finish = 20 oWorker2.ThreadName = "Отсчет 2" oWorker2.SymThread = "*" " " запускаем наперегонки Thread.CurrentThread.Priority = _ ThreadPriority.Highest Thread1.Start() Thread2.Start() " Ждем завершения процессов Thread1.Join() Thread2.Join() MsgBox("Оба процесса завершились") End Sub

    Обратите внимание, что здесь используется один класс для создания нескольких потоков. Запустим приложение и посмотрим на динамику выполнения двух потоков (рис. 3). Тут видно, что в целом они выполняются с одинаковой скоростью, первый немного впереди за счет более раннего запуска.

    Теперь перед запуском первого потока установим для него приоритет на один уровень ниже:

    Thread1.Priority = _ ThreadPriority.BelowNormal

    Картина резко поменялась: второй поток практически полностью отнял все время у первого (рис. 4).

    Отметим также использование метода Join. С его помощью мы выполняем довольно часто встречающийся вариант синхронизации потоков, при котором главная программа ждет завершения выполнения нескольких параллельных вычислительных процессов.

    Заключение

    Мы лишь затронули основы разработки многопоточных.NET-приложений. Один из наиболее сложных и на практике актуальных вопросов - это синхронизация потоков. Кроме применения описанного в этой статье объекта Thread (у него есть много методов и свойств, которые мы не рассматривали здесь), очень важную роль в управлении потоками играют классы Monitor и Mutex, а также операторы lock (C#) и SyncLock (VB.NET).

    Более подробное описание этой технологии приведено в отдельных главах книг и , из которых мне хотелось бы привести несколько цитат (с которыми я полностью согласен) в качестве очень краткого подведения итогов по теме "Многопоточность в.NET".

    "Если вы новичок, для вас может быть неожиданностью обнаружить, что издержки, связанные с созданием и диспетчеризацией потоков, могут привести к тому, что однопоточное приложение работает быстрее... Поэтому всегда старайтесь протестировать оба прототипа программы - однопоточный и многопоточный" .

    "Вы должны тщательно подходить к проектированию многопоточности и жестко управлять доступом к общим объектам и переменным" .

    "Не следует рассматривать применение многопоточности как подход по умолчанию" .

    "Я спросил аудиторию, состоящую из опытных VB-программистов, хотя ли они получить свободную многопоточность будущей версии VB. Практически все подняли руки. Затем я спросил, кто знает, на что он идет при этом. На этот раз руки подняли всего несколько человек, и на их лицах были понимающие улыбки" .

    "Если вас не устрашили трудности, связанные с проектированием многопоточных приложений, при правильном применении многопоточность способна значительно улучшить быстродействие приложения" .

    От себя добавлю, что технология создания многопоточных.NET-приложений (как и многие другие технологии.NET) в целом практически не зависит от используемого языка. Поэтому я советую разработчикам изучать разные книги и статьи, независимо от того, какой язык программирования выбран в них для демонстрации той или иной технологии.

    Литература:

    1. Дан Эпплман. Переход на VB.NET: стратегии, концепции, код/Пер. с англ. - СПб.: "Питер", 2002, - 464 с.: ил.
    2. Том Арчер. Основы C#. Новейшие технологии/Пер. с англ. - М.: Издательско-торговый дом "Русская Редакция", 2001. - 448 с.: ил.

    Многозадачность и многопоточность

    Начнем с такого простого утверждения: 32-разрядные операционные системы Windows поддерживают многозадачные (многопроцессные) и многопоточные режимы обработки данных. Можно обсуждать, насколько хорошо они это делают, но это уже другой вопрос.

    Многозадачность - это режим работы, когда компьютер может выполнять несколько задач одновременно, параллельно. Понятно, что если компьютер имеет один процессор, то речь идет о псевдопараллельности, когда ОС по некоторым правилам может выполнять быстрое переключение между различными задачами. Задача - это программа или часть программы (приложения), выполняющая некоторое логическое действие и являющаяся единицей, для которой ОС выделяет ресурсы. Несколько в упрощенном виде можно считать, что в Windows задачей является каждый программный компонент, реализованный в виде отдельного исполняемого модуля (EXE, DLL). Для Windows понятие "задача" имеет тот же смысл, что и "процесс", что, в частности, означает выполнение программного кода строго в отведенном для него адресном пространстве.

    Имеется два основных вида многозадачности - совместная (cooperative) и вытесняющая (preemptive). Первый вариант, реализованный в ранних версиях Windows, предусматривает переключение между задачами только в момент обращения активной задачи к ОС (например, для ввода-вывода). При этом каждый поток отвечает за возврат управления ОС. Если же задача забывала делать такую операцию (например, зацикливалась), то довольно часто это приводило к зависанию всего компьютера.

    Вытесняющая многозадачность - режим, когда сама ОС отвечает за выдачу каждому потоку причитающегося ему кванта времени (time-slice), по истечении которого она (при наличии запросов от других задач) автоматически прерывает этот поток и принимает решение, что запускать далее. Раньше этот режим так и назывался - "с разделением времени".

    А что же такое поток? Поток - это автономный вычислительный процесс, но выделенный не на уровне ОС, а внутри задачи. Принципиальное отличие потока от "процесса-задачи" заключается в том, что все потоки задачи выполняются в едином адресном пространстве, то есть могут работать с общими ресурсами памяти. Именно в этом заключаются их достоинства (параллельная обработка данных) и недостатки (угроза надежности программы). Тут следует иметь в виду, что в случае многозадачности за защиту приложений отвечает в первую очередь ОС, а при использовании мнопоточности - сам разработчик.

    Отметим, что использование многозадачного режима в однопроцессорных системах позволяет повысить общую производительность именно многозадачной системы в целом (хотя и не всегда, так как по мере увеличения числа переключений доля ресурсов, занимаемых под работу ОС, возрастает). Но время выполнения конкретной задачи всегда, хотя бы и ненамного, увеличивается за счет дополнительной работы ОС.

    Если процессор сильно загружен задачами (при минимальных простоях для ввода-вывода, например, в случае решения чисто математических задач), реальное общее повышение производительности достигается лишь при использовании многопроцессорных систем. Такие системы допускают разные модели распараллеливания - на уровне задач (каждая задача может занимать только один процессор, потоки же выполняются только псевдопараллельно) или на уровне потоков (когда одна задача может занимать своими потоками несколько процессоров).

    Тут также можно вспомнить, что при эксплуатации мощных вычислительных систем коллективного пользования, родоначальником которых стало в конце 60-х годов семейство IBM System/360, одной из наиболее актуальных задач был выбор оптимального варианта управления многозадачностью - в том числе в динамическом режиме с учетом различных параметров. В принципе управление многозадачным режимом - это функция операционной системы. Но эффективность реализации того или иного варианта непосредственно связана с особенностями архитектуры компьютера в целом, и особенно процессора. Например, та же высокопроизводительная IBM System/360 отлично работала в системах коллективного пользования в сфере бизнес-задач, но при этом она была совершенно не приспособлена для решения задач класса "реального масштаба времени". В этой области тогда явно лидировали существенно более дешевые и простые мини-компьютеры типа DEC PDP 11/20.

    Потоки и процессы - это связанные понятия в вычислительной технике. Оба представляют из себя последовательность инструкций, которые должны выполняться в определенном порядке. Инструкции в отдельных потоках или процессах, однако, могут выполняться параллельно.

    Процессы существуют в операционной системе и соответствуют тому, что пользователи видят, как программы или приложения. Поток, с другой стороны, существует внутри процесса. По этой причине потоки иногда называются "облегченные процессы". Каждый процесс состоит из одного или более потоков. Существование нескольких процессов позволяет компьютеру "одновременно" выполнять несколько задач. Существование нескольких потоков позволяет процессу разделять работу для параллельного выполнения. На многопроцессорном компьютере процессы или потоки могут работать на разных процессорах. Это позволяет выполнять реально параллельную работу.

    Абсолютно параллельная обработка не всегда возможна. Потоки иногда должны синхронизироваться. Один поток может ожидать результата другого потока, или одному потоку может понадобиться монопольный доступ к ресурсу, который используется другим потоком. Проблемы синхронизации являются распространенной причиной ошибок в многопоточных приложениях. Иногда поток может закончиться, ожидая ресурс, который никогда не будет доступен. Это кончается состоянием, которое называется взаимоблокировка.

    Первое, что надо усвоить - процесс состоит хотя бы из одного потока . В ОС каждому процессу соответствует адресное пространство и одиночный управляющий поток. Фактически это и определяет процесс.

    С одной стороны, процесс можно рассматривать как способ объединения родственных ресурсов в одну группу . У процесса есть адресное пространство, содержащее текст программы и данные, а также другие ресурсы. Ресурсами являются открытые файлы, дочерние процессы, необработанные аварийные сообщения, обобработчики сигналов, учетная информация и многое другое. Гораздо проще управлять ресурсами, объединив их в форме процесса.

    С другой стороны, процесс можно рассматривать как поток исполняемых кокоманд или просто поток . У потока есть счетчик команд, отслеживающий порядок выполнения действий. У него есть регистры, в которых хранятся текущие переменные. У него есть стек, содержащий протокол выполнения процесса, где на каждую процедуру, вызванную, но еще не вернувшуюся, отведен отдельный фрейм. Хотя поток должен исполняться внутри процесса, следует различать концепции потока и процесса.Процессы используются для группирования ресурсов, а потоки являются объектами, поочередно исполняющимися на центральном процессоре.

    Концепция потоков добавляет к модели процессавозможность одновременного выполнения в одной и той же среде процесса нескольких программ , в достаточной степени независимых. Несколько потоков, работающих параллельно в одном процессе, аналогичны нескольким процессам, идущим параллельно на одном компьютере. В первом случае потоки разделяют адресное пространство, открытые файлы и другие ресурсы. Во втором случае процессы совместно пользуются физической памятью, дисками, принтерами и другими ресурсами. Потоки обладают некоторыми свойствами процессов, поэтому их иногда называют упрощенными процессами. Терминмногопоточность также используется для описания использования нескольких потоков в одном процессе.

    Любой поток состоит из двух компонентов:

    объекта ядра , через который операционная система управляет потоком. Там же хранится статистическая информация о потоке(дополнительные потоки создаются также ядром);
    стека потока , который содержит параметры всех функций и локальные переменные, необходимые потоку для выполнения кода.

    Подводя черту, закрепим: главное отличие процессов от потоков , состоит в том, что процессы изолированы друг от друга, так используют разные адресные пространства, а потоки, могут использовать одно и то же пространство (внутри процесса) при этом, выполняя действия не мешаяя друг другу. В этом и заключается удобство многопоточного программинга : разбив приложение на несколько последовательных потоков, мы можем увеличить производительность, упростить пользовательский интерфейс и добиться масштабируемости (если Ваше приложение установят на многопроцессорную систему, выполняя потоки на разных процах, ваша прога будет работать с аховой скоростью=)).

    1. Поток (thread) определяет последовательность исполнения кода в процессе.

    2. Процесс ничего не исполняет, он просто служит контейнером потоков.

    3. Потоки всегда создаются в контексте какого-либо процесса, и вся их жизнь проходит только в его границах.

    4. Потоки могут исполнять один и тот же код и манипулировать одними и теми же данными, а также совместно использовать описатели объектов ядра, поскольку таблица описателей создается не в отдельных потоках, а в процессах.

    5. Так как потоки расходуют существенно меньше ресурсов, чем процессы, старайтесь решать свои задачи за счет использования дополнительных потоков и избегайте создания новых процессов(но подходите к этому с умом).

    Многозада́чность (англ. multitasking ) - свойство операционной системы или среды программирования обеспечивать возможность параллельной (или псевдопараллельной) обработки нескольких процессов. Истинная многозадачность операционной системы возможна только в распределённых вычислительных системах.

    Файл:Screenshot of Debian (Release 7.1, "Wheezy") running the GNOME desktop environment, Firefox, Tor, and VLC Player.jpg

    Рабочий стол современной операционной системы, отражающий активность нескольких процессов.

    Существует 2 типа многозадачности :

    · Процессная многозадачность (основанная на процессах - одновременно выполняющихся программах). Здесь программа - наименьший элемент кода, которым может управлять планировщик операционной системы. Более известна большинству пользователей (работа в текстовом редакторе и прослушивание музыки).

    · Поточная многозадачность (основанная на потоках). Наименьший элемент управляемого кода - поток (одна программа может выполнять 2 и более задачи одновременно).

    Многопоточность - специализированная форма многозадачности .

    · 1 Свойства многозадачной среды

    · 2 Трудности реализации многозадачной среды

    · 3 История многозадачных операционных систем

    · 4 Типы псевдопараллельной многозадачности

    o 4.1 Невытесняющая многозадачность

    o 4.2 Совместная или кооперативная многозадачность

    o 4.3 Вытесняющая или приоритетная многозадачность (режим реального времени)

    · 5 Проблемные ситуации в многозадачных системах

    o 5.1 Голодание (starvation)

    o 5.2 Гонка (race condition)

    · 7 Примечания

    Свойства многозадачной среды[править | править исходный текст]

    Примитивные многозадачные среды обеспечивают чистое «разделение ресурсов», когда за каждой задачей закрепляется определённый участок памяти, и задача активизируется в строго определённые интервалы времени.

    Более развитые многозадачные системы проводят распределение ресурсов динамически, когда задача стартует в памяти или покидает память в зависимости от её приоритета и от стратегии системы. Такая многозадачная среда обладает следующими особенностями:

    · Каждая задача имеет свой приоритет, в соответствии с которым получает процессорное время и память

    · Система организует очереди задач так, чтобы все задачи получили ресурсы, в зависимости от приоритетов и стратегии системы

    · Система организует обработку прерываний, по которым задачи могут активироваться, деактивироваться и удаляться

    · По окончании положенного кванта времени ядро временно переводит задачу из состояния выполнения в состояние готовности, отдавая ресурсы другим задачам. При нехватке памяти страницы невыполняющихся задач могут быть вытеснены на диск (своппинг), а потом через определённое системой время, восстанавливаться в памяти

    · Система обеспечивает защиту адресного пространства задачи от несанкционированного вмешательства других задач

    · Система обеспечивает защиту адресного пространства своего ядра от несанкционированного вмешательства задач

    · Система распознаёт сбои и зависания отдельных задач и прекращает их

    · Система решает конфликты доступа к ресурсам и устройствам, не допуская тупиковых ситуаций общего зависания от ожидания заблокированных ресурсов

    · Система гарантирует каждой задаче, что рано или поздно она будет активирована

    · Система обрабатывает запросы реального времени

    · Система обеспечивает коммуникацию между процессами

    Трудности реализации многозадачной среды[править | править исходный текст]

    Основной трудностью реализации многозадачной среды является её надёжность, выраженная в защите памяти, обработке сбоев и прерываний, предохранении от зависаний и тупиковых ситуаций.

    Кроме надёжности, многозадачная среда должна быть эффективной. Затраты ресурсов на её поддержание не должны: мешать процессам проходить, замедлять их работу, резко ограничивать память.

    Многопото́чность - свойство платформы (например, операционной системы, виртуальной машины и т. д.) или приложения, состоящее в том, что процесс, порождённый в операционной системе, может состоять из нескольких потоков , выполняющихся «параллельно», то есть без предписанного порядка во времени. При выполнении некоторых задач такое разделение может достичь более эффективного использования ресурсов вычислительной машины.

    Такие потоки называют также потоками выполнения (от англ. thread of execution ); иногда называют «нитями» (буквальный перевод англ. thread ) или неформально «тредами».

    Сутью многопоточности является квазимногозадачность на уровне одного исполняемого процесса, то есть все потоки выполняются в адресном пространстве процесса. Кроме этого, все потоки процесса имеют не только общее адресное пространство, но и общиедескрипторы файлов. Выполняющийся процесс имеет как минимум один (главный) поток.

    Многопоточность (как доктрину программирования) не следует путать ни с многозадачностью, ни с многопроцессорностью, несмотря на то, что операционные системы, реализующие многозадачность, как правило реализуют и многопоточность.

    К достоинствам многопоточности в программировании можно отнести следующее:

    · Упрощение программы в некоторых случаях за счет использования общего адресного пространства.

    · Меньшие относительно процесса временны́е затраты на создание потока.

    · Повышение производительности процесса за счет распараллеливания процессорных вычислений и операций ввода-вывода.

    · 1 Типы реализации потоков

    · 2 Взаимодействие потоков

    · 3 Критика терминологии

    · 6 Примечания

    Типы реализации потоков[править | править исходный текст]

    · Поток в пространстве пользователя. Каждый процесс имеет таблицу потоков, аналогичную таблице процессов ядра.

    Достоинства и недостатки этого типа следующие: Недостатки

    1. Отсутствие прерывания по таймеру внутри одного процесса

    2. При использовании блокирующего системного запроса для процесса все его потоки блокируются.

    3. Сложность реализации

    · Поток в пространстве ядра. Наряду с таблицей процессов в пространстве ядра имеется таблица потоков.

    · «Волокна» (англ. fibers ). Несколько потоков режима пользователя, исполняющихся в одном потоке режима ядра. Поток пространства ядра потребляет заметные ресурсы, в первую очередь физическую память и диапазон адресов режима ядра для стека режима ядра. Поэтому было введено понятие «волокна» - облегчённого потока, выполняемого исключительно в режиме пользователя. У каждого потока может быть несколько «волокон».

    Взаимодействие потоков[править | править исходный текст]

    В многопоточной среде часто возникают проблемы, связанные с использованием параллельно исполняемыми потоками одних и тех же данных или устройств. Для решения подобных проблем используются такие методы взаимодействия потоков, как взаимоисключения (мьютексы), семафоры, критические секции и события

    · Взаимоисключения (mutex, мьютекс) - это объект синхронизации, который устанавливается в особое сигнальное состояние, когда не занят каким-либо потоком. Только один поток владеет этим объектом в любой момент времени, отсюда и название таких объектов (от английского mut ually ex clusive access - взаимно исключающий доступ) - одновременный доступ к общему ресурсу исключается. После всех необходимых действий мьютекс освобождается, предоставляя другим потокам доступ к общему ресурсу. Объект может поддерживать рекурсивный захват второй раз тем же потоком, увеличивая счетчик, не блокируя поток, и требуя потом многократного освобождения. Такова, например, критическая секция в Win32. Тем не менее есть и такие реализации, которые не поддерживают такое и приводят к взаимной блокировке потока при попытке рекурсивного захвата. Это FAST_MUTEX в ядре Windows.

    · Семафоры представляют собой доступные ресурсы, которые могут быть приобретены несколькими потоками в одно и то же время, пока пул ресурсов не опустеет. Тогда дополнительные потоки должны ждать, пока требуемое количество ресурсов не будет снова доступно. Семафоры очень эффективны, поскольку они позволяют одновременный доступ к ресурсам. Семафор есть логическое расширение мьютекса - семафор со счетчиком 1 эквивалентен мьютексу, но счетчик может быть и более 1.

    · События. Объект, хранящий в себе 1 бит информации «просигнализирован или нет», над которым определены операции «просигнализировать», «сбросить в непросигнализированное состояние» и «ожидать». Ожидание на просигнализированном событии есть отсутствие операции с немедленным продолжением исполнения потока. Ожидание на непросигнализированном событии приводит к приостановке исполнения потока до тех пор, пока другой поток (или же вторая фаза обработчика прерывания в ядре ОС) не просигнализирует событие. Возможно ожидание нескольких событий в режимах «любого» или «всех». Возможно также создания события, автоматически сбрасываемого в непросигнализированное состояние после пробуждения первого же - и единственного - ожидающего потока (такой объект используется как основа для реализации объекта «критическая секция»). Активно используются в MS Windows, как в режиме пользователя, так и в режиме ядра. Аналогичный объект имеется и в ядре Linux под названием kwait_queue.

    · Критические секции обеспечивают синхронизацию подобно мьютексам за исключением того, что объекты, представляющие критические секции, доступны в пределах одного процесса. События, мьютексы и семафоры также можно использовать в однопроцессном приложении, однако реализации критических секций в некоторых ОС (например, Windows NT) обеспечивают более быстрый и более эффективный механизм взаимно-исключающей синхронизации - операции «получить» и «освободить» на критической секции оптимизированы для случая единственного потока (отсутствия конкуренции) с целью избежать любых ведущих в ядро ОС системных вызовов. Подобно мьютексам объект, представляющий критическую секцию, может использоваться только одним потоком в данный момент времени, что делает их крайне полезными при разграничении доступа к общим ресурсам.

    · Условные переменные (condvars). Сходны с событиями, но не являются объектами, занимающими память - используется только адрес переменной, понятие «содержимое переменной» не существует, в качестве условной переменной может использоваться адрес произвольного объекта. В отличие от событий, установка условной переменной в просигнализированное состояние не влечет за собой никаких последствий в случае, если на данный момент нет потоков, ожидающих на переменной. Установка события в аналогичном случае влечет за собой запоминание состояния «просигнализировано» внутри самого события, после чего следующие потоки, желающие ожидать события, продолжают исполнение немедленно без остановки. Для полноценного использования такого объекта необходима также операция «освободить mutex и ожидать условную переменную атомарно». Активно используются в UNIX-подобных ОС. Дискуссии о преимуществах и недостатках событий и условных переменных являются заметной частью дискуссий о преимуществах и недостатках Windows и UNIX.

    · Порт завершения ввода-вывода (IO completion port, IOCP). Реализованный в ядре ОС и доступный через системные вызовы объект «очередь» с операциями «поместить структуру в хвост очереди» и «взять следующую структуру с головы очереди» - последний вызов приостанавливает исполнение потока в случае, если очередь пуста, и до тех пор, пока другой поток не осуществит вызов «поместить». Самой важной особенностью IOCP является то, что структуры в него могут помещаться не только явным системным вызовом из режима пользователя, но и неявно внутри ядра ОС как результат завершения асинхронной операции ввода-вывода на одном из дескрипторов файлов. Для достижения такого эффекта необходимо использовать системный вызов «связать дескриптор файла с IOCP». В этом случае помещенная в очередь структура содержит в себе код ошибки операции ввода-вывода, а также, для случая успеха этой операции - число реально введенных или выведенных байт. Реализация порта завершения также ограничивает число потоков, исполняющихся на одном процессоре/ядре после получения структуры из очереди. Объект специфичен для MS Windows, и позволяет обработку входящих запросов соединения и порций данных в серверном программном обеспечении в архитектуре, где число потоков может быть меньше числа клиентов (нет требования создавать отдельный поток с расходами ресурсов на него для каждого нового клиента).

    · ERESOURCE. Мьютекс, поддерживающий рекурсивный захват, с семантикой разделяемого или эксклюзивного захвата. Семантика: объект может быть либо свободен, либо захвачен произвольным числом потоков разделяемым образом, либо захвачен всего одним потоком эксклюзивным образом. Любые попытки осуществить захваты, нарушающее это правило, приводят к блокировке потока до тех пор, пока объект не освободится так, чтобы сделать захват разрешенным. Также есть операции вида TryToAcquire - никогда не блокирует поток, либо захватывает, либо (если нужна блокировка) возвращает FALSE, ничего не делая. Используется в ядре Windows, особенно в файловых системах - так, например, любому кем-то открытому дисковому файлу соответствует структура FCB, в которой есть 2 таких объекта для синхронизации доступа к размеру файла. Один из них - paging IO resource - захватывается эксклюзивно только в пути обрезания файла, и гарантирует, что в момент обрезания на файле нет активного ввода-вывода от кэша и от отображения в память.

    · Rundown protection. Полудокументированный (вызовы присутствуют в файлах-заголовках, но отсутствуют в документации) объект в ядре Windows. Счетчик с операциями «увеличить», «уменьшить» и «ждать». Ожидание блокирует поток до тех пор, пока операции уменьшения не уменьшат счетчик до нуля. Кроме того, операция увеличения может отказать, и наличие активного в данный момент времени ожидания заставляет отказывать все операции увеличения.

    Пример посторения простого многопоточного приложения.

    Рожден о причине большого числа вопросов о построении многопоточных приложений в Delphi.

    Цель данного примера - продемонстрировать как правильно строить многопоточное приложение, с выносом длительной работы в отдельный поток. И как в таком приложении обеспечить взаимодействие основного потока с рабчим для передачи данных из формы (визуальных компонентов) в поток и обратно.

    Пример не прретендует на полноту, он лишь демонстрирует наиболее простые способы взаимодействия потоков. Позволяя пользователю "быстренько слепить" (кто бы знал как я этого не люблю) правильно работающее многопоточное приложение.
    В нем все подробно (на мой взгляд) прокоментированно, но, если будут вопросы, задавайте.
    Но еще раз предостерегаю: Потоки - дело не простое . Если Вы не представляете как все это работает, то есть огромная опасность что часто у Вас все будет работать нормально, а иногда программа будет вести себя более чем странно. Поведение неправильно написанной многопотчной программы очень сильно зависит от большого кол-ва факторов, которые порою невозможно воспроизвести при отладке.

    Итак пример. Для удобства поместил и код, и прикрепил архив с кодом модуля и формы

    unit ExThreadForm;

    uses
    Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms,
    Dialogs, StdCtrls;

    // константы используемые при передаче данных из потока в форму с помощью
    // отсылки оконных сообщений
    const
    WM_USER_SendMessageMetod = WM_USER+10;
    WM_USER_PostMessageMetod = WM_USER+11;

    type
    // описание класса потока, потомка от tThread
    tMyThread = class(tThread)
    private
    SyncDataN:Integer;
    SyncDataS:String;
    procedure SyncMetod1;
    protected
    procedure Execute; override;
    public
    Param1:String;
    Param2:Integer;
    Param3:Boolean;
    Stopped:Boolean;
    LastRandom:Integer;
    IterationNo:Integer;
    ResultList:tStringList;

    Constructor Create (aParam1:String);
    destructor Destroy; override;
    end;

    // описание класса использующей поток формы
    TForm1 = class(TForm)
    Label1: TLabel;
    Memo1: TMemo;
    btnStart: TButton;
    btnStop: TButton;
    Edit1: TEdit;
    Edit2: TEdit;
    CheckBox1: TCheckBox;
    Label2: TLabel;
    Label3: TLabel;
    Label4: TLabel;
    procedure btnStartClick(Sender: TObject);
    procedure btnStopClick(Sender: TObject);
    private
    { Private declarations }
    MyThread:tMyThread;
    procedure EventMyThreadOnTerminate (Sender:tObject);
    procedure EventOnSendMessageMetod (var Msg: TMessage);message WM_USER_SendMessageMetod;
    procedure EventOnPostMessageMetod (var Msg: TMessage); message WM_USER_PostMessageMetod;

    Public
    { Public declarations }
    end;

    var
    Form1: TForm1;

    {
    Stopped - демонстрирует передачу данных от формы к потоку.
    Дополнительной синхронизации не требует, поскольку является простым
    однословным типом, и пишется только одним потоком.
    }

    procedure TForm1.btnStartClick(Sender: TObject);
    begin
    Randomize(); // обеспечение случайнсти в последовательности по Random() - к потоком отношения не имеет

    // Создание экземпляра объекта потока, с передачей ему входного параметра
    {
    ВНИМАНИЕ!
    Конструктор потока написан таким образом что поток создается
    приостановленным, поскольку это позволяет:
    1. Контролировать момент его запуска. Это почти всегда удобнее, т.к.
    позволяет еще до запуска настроить поток, передать ему входные
    параметры, и т.п.
    2. Т.к. ссылка на созданный объект будет сохранена в поле формы, то
    после самоуничтожения потока (см.ниже) которое при запущенном потоке
    может произойти в любой момент, эта ссылка станет недействительной.
    }
    MyThread:= tMyThread.Create(Form1.Edit1.Text);

    // Однако, поскольку поток создан приостановленным, то при любых ошибках
    // во время его инициализации (до запуска), мы должны его сами уничтожить
    // для чегу используем try / except блок
    try

    // Назначение обработчика завершения потока в котором будем принимать
    // результаты работы потока, и "затирать" ссылку на него
    MyThread.OnTerminate:= EventMyThreadOnTerminate;

    // Поскольку результаты будем забирать в OnTerminate, т.е. до самоуничтожения
    // потока то снимем с себя заботы по его уничтожению
    MyThread.FreeOnTerminate:= True;

    // Пример передачи входных параметров через поля объекта-потока, в точке
    // создания экземпляра, когда он еще не запущен.
    // Лично я, предпочитаю делать это через параметры переопределяемого
    // конструктора (tMyThread.Create)
    MyThread.Param2:= StrToInt(Form1.Edit2.Text);

    MyThread.Stopped:= False; // своего рода тоже параметр, но меняющийся во
    // время работы потока
    except
    // поскольку поток еще не запущен и не сможет самоуничтожиться, уничтожим его "вручную"
    FreeAndNil(MyThread);
    // а дальше пусть исключительная ситуация обрабатывается обычным порядком
    raise;
    end;

    // Поскольку объект потока успешно создан и настроен, настало время запустить его
    MyThread.Resume;

    ShowMessage("Поток запущен");
    end;

    procedure TForm1.btnStopClick(Sender: TObject);
    begin
    // Если экземпляр потока еще существует, то попросим его остановиться
    // Причем, именно "попросим". "Заставить" в принципе тоже можем, но это будет
    // исключительно аварийный вариант, требующий четкого понимания всей этой
    // потоковой кухни. Поэтому, здесь не рассматривается.
    if Assigned(MyThread) then
    MyThread.Stopped:= True
    else
    ShowMessage("Поток не запущен!");
    end;

    procedure TForm1.EventOnSendMessageMetod(var Msg: TMessage);
    begin
    // метод обработки синхронного сообщения
    // в WParam адрес объекта tMyThread, в LParam тек.значение LastRandom потока
    with tMyThread(Msg.WParam) do begin
    Form1.Label3.Caption:= Format("%d %d %d",);
    end;
    end;

    procedure TForm1.EventOnPostMessageMetod(var Msg: TMessage);
    begin
    // метод обработки асинхронного сообщения
    // в WParam тек.значение IterationNo, в LParam тек.значение LastRandom потока
    Form1.Label4.Caption:= Format("%d %d",);
    end;

    procedure TForm1.EventMyThreadOnTerminate (Sender:tObject);
    begin
    // ВАЖНО!
    // Метот обработки события OnTerminate всегда вызывается в контексте основного
    // потока - это гарантируется реализацией tThread. Поэтому, в нем можно свободно
    // использовать любые свойства и методы любых объектов

    // На всякий случай, убедимся что экземпляр объекта еще существует
    if not Assigned(MyThread) then Exit; // если его нет, то и делать нечего

    // получение результатов работы потока экземпляра объекта потока
    Form1.Memo1.Lines.Add(Format("Поток завершился с результатом %d",));
    Form1.Memo1.Lines.AddStrings((Sender as tMyThread).ResultList);

    // Уничтожение ссылки на экземпляр объекта потока.
    // Поскольку поток у нас самоуничтожающийся (FreeOnTerminate:= True)
    // то после завершения обрабтчика OnTerminate, экземпляр объекта-потока будет
    // уничтожен (Free), и все ссылки на него станут недействительными.
    // Что бы случайно не напороться на такую ссылку, затрем MyThread
    // Еще раз замечу - не уничтожим объект, а только затрем ссылку. Объект
    // уничтожится сам!
    MyThread:= Nil;
    end;

    constructor tMyThread.Create (aParam1:String);
    begin
    // Создаем экземпляр ПРИОСТАНОВЛЕННОГО потока (см.коментарий при создании экземпляра)
    inherited Create(True);

    // Создание внутренних объектов (если необходимо)
    ResultList:= tStringList.Create;

    // Получение исходных данных.

    // Копирование входных данных переданных через параметр
    Param1:= aParam1;

    // Пример получения входных данных из VCL-компонентов в конструкторе объекта-потока
    // Такое в данном случае допустимо, поскольку конструктор вызывается в контексте
    // основного потока. Следовательно, здесь можно обращаться к VCL-компонентам.
    // Но, я такого не люблю, поскольку считаю что плохо когда поток знает что-то
    // о какой-то там форме. Но, чего не сделаешь для демонстрации.
    Param3:= Form1.CheckBox1.Checked;
    end;

    destructor tMyThread.Destroy;
    begin
    // уничтожение внутренних объектов
    FreeAndNil(ResultList);
    // уничтожение базового tThread
    inherited;
    end;

    procedure tMyThread.Execute;
    var
    t:Cardinal;
    s:String;
    begin
    IterationNo:= 0; // счетчик результатов (номер цикла)

    // В моем примере тело потока представляет собой цикл, который завершается
    // либо по внешней "просьбе" завершиться передаваемый через изменяемый параметр Stopped,
    // либо просто совершив 5 циклов
    // Мне приятнее такое записывать через "вечный" цикл.

    While True do begin

    Inc(IterationNo); // очередной номер цикла

    LastRandom:= Random(1000); // слючайное число - для демонстрации передачи параметров от потока в форму

    T:= Random(5)+1; // время на которое будем засыпать если нас не завершат

    // Тупая работа (зависящая от входного параметра)
    if not Param3 then
    Inc(Param2)
    else
    Dec(Param2);

    // Сформируем промежуточный результат
    s:= Format("%s %5d %s %d %d",
    );

    // Добавим промежуточный результат к списку резуольтатов
    ResultList.Add(s);

    //// Примеры передачи промежуточного результата на форму

    //// Передача через синхронизируемый метод - классический способ
    //// Недостатки:
    //// - синхронизируемый метод - это обычно метод класса потока (для доступа
    //// к полям объекта-потока), но, для доступа к полям формы, он должен
    //// "знать" про нее и ее поля (объекты), что обычно не очень хорошо с
    //// точки зрения организации программы.
    //// - текущий поток будет приостановлен до завершения выполнения
    //// синхронизированного метода.

    //// Достоинства:
    //// - стандартность и универсальность
    //// - в синхронизированном методе можно пользоваться
    //// всеми полями объекта-потока.
    // сначала, если необходимо, надо сохранить передаваемые данные в
    // специальных полях объекта объекта.
    SyncDataN:= IterationNo;
    SyncDataS:= "Sync"+s;
    // и затем обеспечить синхронизированный вызов метода
    Synchronize(SyncMetod1);

    //// Передача через синхронную отсылку сообщения (SendMessage)
    //// в этом случае, данные можно передать как через параметры сообщения (LastRandom),
    //// так и через поля объекта, передав в параметре сообщения адрес экземпляра
    //// объекта-потока - Integer(Self).
    //// Недостатки:
    //// - поток должен знать handle окна формы
    //// - как и при Synchronize, текущий поток будет приостановлен до
    //// завершения обработки сообщения основным потоком
    //// - требует существенных затрат процессорного времени на каждый вызов
    //// (на переключение потоков) поэтому нежелателен очень частый вызов
    //// Достоинства:
    //// - как и при Synchronize, при обработке сообщения можно пользоваться
    //// всеми полями объекта-потока (если конечно был передан его адрес)


    //// запуска потока.
    SendMessage(Form1.Handle,WM_USER_SendMessageMetod,Integer(Self),LastRandom);

    //// Передача через асинхронную отсылку сообщения (PostMessage)
    //// Поскольку в этом случае к моменту получения сообщения основным потоком,
    //// посылающий поток может уже завершиться, передача адреса экземпляра
    //// объекта-потока недопустима!
    //// Недостатки:
    //// - поток должен знать handle окна формы;
    //// - из-за асинхронности, передача данных возможна только через параметры
    //// сообщения, что существенно усложняет передачу данных имеющих размер
    //// более двух машинныхх слов. Удобно применять для передачи Integer и т.п.
    //// Достоинства:
    //// - в отличие от предыдущих методов, текущий поток НЕ будет
    //// приостановлен, а сразу же продолжит свое выполнение
    //// - в отличии от синхронизированного вызова, обработчиком сообщения
    //// является метод формы, который должен иметь знания об объекте-потоке,
    //// или вовсе ничего не знать о потоке, если данные передаеются только
    //// через параметры сообщения. Т.е., поток может ничего не знать о форме
    //// вообще - только ее Handle, который может быть передан как параметр до
    //// запуска потока.
    PostMessage(Form1.Handle,WM_USER_PostMessageMetod,IterationNo,LastRandom);

    //// Проверка возможного завершения

    // Проверка завершения по параметру
    if Stopped then Break;

    // Проверка завершения по случаю
    if IterationNo >= 10 then Break;

    Sleep(t*1000); // Засыпаем на t секунд
    end;
    end;

    procedure tMyThread.SyncMetod1;
    begin
    // этот метод вызывается посредством метода Synchronize.
    // Т.е., не смотря на то что он является методом потока tMyThread,
    // он выполняется в контексте основного потока приложения.
    // Следовательно, ему все можно, ну или почти все:)
    // Но помним, здесь не стоит долго "возиться"

    // Переданные параметры, мы можем извлечь из специальных поле, куда мы их
    // сохранили перед вызовом.
    Form1.Label1.Caption:= SyncDataS;

    // либо из других полей объекта потока, например отражающих его тек.состояние
    Form1.Label2.Caption:= Format("%d %d",);
    end;

    А вообще, примеру предшествовали следующие мои рассуждения на тему....

    Во первых:
    ВАЖНЕЙШЕЕ правило многопоточного программирования на Delphi:
    В контексте не основного потока нельзя, обращаться к свойствам и методам форм, да и вообще всех компонентов которые "растут" из tWinControl.

    Это означает (несколько упрощенно) что ни в методе Execute унаследованного от TThread, ни в других методах/процедурах/функциях вызываемых из Execute, нельзя напрямую обращаться ни к каким свойствам и методам визуальных компонентов.

    Как делать правильно.
    Тут единых рецептов нет. Точнее, вариантов так много и разных, что в зависимости от конкретного случая нужно выбирать. Поэтому к статье и отсылают. Прочитав и поняв ее, программист сможет понять и как лучше сделать в том или ином случае.

    Если коротенько на пальцах:

    Чаще всего, многопоточным приложение становится либо когда надо делать какую либо длительную работу, либо когда можно одновременно делать несколько дел, не сильно нагружающих процессор.

    В первом случае, реализация работы внутри основного потока приводит к «торможению» пользовательского интерфейса – пока делается работа, не выполняется цикл обработки сообщений. Как следствие – программа не реагирует на действия пользователя, и не прорисовывается форма, например после ее перемещения пользователем.

    Во втором случае, когда работа подразумевает активный обмен с внешним миром, то во время вынужденных «простоев». В ожидании получения/отправки данных, можно параллельно делать еще что-то, например, опять же другие посылать/принимать данные.

    Существуют и другие случаи, но реже. Впрочем, это и не важно. Сейчас не об этом.

    Теперь, как все это пишется. Естественно рассматривается некий наиболее частый случай, несколько обобщенный. Итак.

    Работа, выносимая в отдельный поток, в общем случае имеет четыре сущности (уж и не знаю как назвать точнее):
    1. Исходные данные
    2. Собственно сама работа (она может зависеть от исходных данных)
    3. Промежуточные данные (например, информация о текущем состоянии выполнения работы)
    4. Выходные данные (результат)

    Чаще всего для считывания и вывода большей части данных используются визуальные компоненты. Но, как было сказано выше – нельзя из потока напрямую обращаться к визуальным компонентам. Как же быть?
    Разработчики Delphi предлагают использовать метод Synchronize класса TThread. Здесь я не буду описывать то, как его применять – для этого есть вышеупомянутая статья. Скажу лишь, что его применение, даже правильное, не всегда оправдано. Имеются две проблемы:

    Во первых, тело метода вызванного через Synchronize всегда выполняется в контексте основного потока, и поэтому, пока оно выполняется, опять же не выполняется цикл обработки оконных сообщений. Следовательно, оно должно выполняться быстро, иначе, мы получим все те же проблемы что и при однопоточной реализации. В идеале, метод вызываемый через Synchronize вообще должен использоваться только для обращения к свойствам и методам визуальных объектов.

    Во вторых, выполнение метода через Synchronize, это «дорогое» удовольствие, вызванное необходимостью двух переключений между потоками.

    Причем, обе проблемы взаимосвязаны, и вызывают противоречие: с одной стороны, для решения первой, надо «размельчать» методы вызываемые через Synchronize, а с другой, их тогда чаще приходится вызывать, теряя драгоценный процессорный ресурс.

    Поэтому, как всегда, надо подходить разумно, и для разных случаев, использовать разные способы взаимодействия потока с внешним миром:

    Исходные данные
    Все данные которые передаются в поток, и не изменяются во время его работы, нужно передавать еще до его запуска, т.е. при создании потока. Для их использования в теле потока, нужно сделать их локальную копию (обычно в полях потомка TThread).
    Если есть исходные данные которые могут меняться во время работы потока, то доступ к таким данным нужно осуществлять либо через синхронизируемые методы (методы вызываемые через Synchronize), либо через поля объекта-потока (потомка TThread). Последнее требует определенной осторожности.

    Промежуточные и выходные данные
    Здесь, опять же есть несколько способов (в порядке моих предпочтений):
    - Метод асинхронной отсылки сообщений главному окну приложению.
    Используется обычно для отсылки основному окну приложения сообщений о состоянии протекания процесса, с передачей незначительного объема данных (например, процента выполнения)
    - Метод синхронной отсылки сообщений главному окну приложению.
    Используется обычно для тех же целей что и асинхронная отсылка, но позволяет передать больший объем данных, без создания отдельной копии.
    - Синхронизируемые методы, по возможности, объединяя в один метод передачу как можно большего объема данных.
    Можно использовать и для получения данных с формы.
    - Через поля объекта-потока, обеспечением взаимоисключающего доступа.
    Подробнее, можно почитать в статье.

    Эх. Коротенько опять не получилось

    Понравилось? Лайкни нас на Facebook